In-Situ Observation Combined with Numerical Simulation of the Solidification and Subsequent Cooling Process for Hot Stamping Steel

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jingzhou Lu, Jiaxi Chen, Weiming Pan, Wanlin Wang, Kun Dou
{"title":"In-Situ Observation Combined with Numerical Simulation of the Solidification and Subsequent Cooling Process for Hot Stamping Steel","authors":"Jingzhou Lu, Jiaxi Chen, Weiming Pan, Wanlin Wang, Kun Dou","doi":"10.1007/s12540-024-01739-0","DOIUrl":null,"url":null,"abstract":"<p>In this study, the solidification and subsequent cooling processes of hot stamping steel during thin slab casting have been investigated using high-temperature confocal in-situ observation experiments and finite element numerical simulations based on the calculation results of phase evolution diagrams. The numerical simulation results reveal that different regions of the cast slab exhibited varying solidification times/cooling rates, with the longest solidification time occurring at the center of the slab, approximately 77.5 s, and the shortest at the corners, around 2.1 s. Considering these findings, in-situ observation experiments have been conducted under cooling rates of 10, 50, 150, and 1000 °C/min, revealing that both solidification and solid-state transformation events are delayed with increasing cooling rates. Notably, under higher cooling rates, the peritectic reaction process exhibit blocky transformation. Based on the findings, this study establishes relationships between the ferrite growth rate/secondary dendrite arm spacing and cooling rate for hot stamping steel. Additionally, potential optimization strategies for continuous casting and secondary cooling process parameters are suggested to enhance the sophistication of thin slab production processes. These optimization methodologies are informed by guiding experiments conducted in conjunction with numerical simulations, ultimately facilitating the optimization of practical production practices.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"48 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12540-024-01739-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the solidification and subsequent cooling processes of hot stamping steel during thin slab casting have been investigated using high-temperature confocal in-situ observation experiments and finite element numerical simulations based on the calculation results of phase evolution diagrams. The numerical simulation results reveal that different regions of the cast slab exhibited varying solidification times/cooling rates, with the longest solidification time occurring at the center of the slab, approximately 77.5 s, and the shortest at the corners, around 2.1 s. Considering these findings, in-situ observation experiments have been conducted under cooling rates of 10, 50, 150, and 1000 °C/min, revealing that both solidification and solid-state transformation events are delayed with increasing cooling rates. Notably, under higher cooling rates, the peritectic reaction process exhibit blocky transformation. Based on the findings, this study establishes relationships between the ferrite growth rate/secondary dendrite arm spacing and cooling rate for hot stamping steel. Additionally, potential optimization strategies for continuous casting and secondary cooling process parameters are suggested to enhance the sophistication of thin slab production processes. These optimization methodologies are informed by guiding experiments conducted in conjunction with numerical simulations, ultimately facilitating the optimization of practical production practices.

Graphical Abstract

Abstract Image

热冲压钢凝固和后续冷却过程的现场观察与数值模拟相结合
本研究利用高温共焦原位观测实验和基于相演化图计算结果的有限元数值模拟,研究了薄板坯浇铸过程中热冲压钢的凝固和后续冷却过程。数值模拟结果显示,浇铸板坯的不同区域表现出不同的凝固时间/冷却速率,凝固时间最长的区域位于板坯中心,约为 77.5 秒,最短的区域位于板坯四角,约为 2.1 秒。考虑到这些发现,我们在冷却速率为 10、50、150 和 1000 °C/min 的条件下进行了原位观测实验,结果表明凝固和固态转变事件都会随着冷却速率的增加而延迟。值得注意的是,在较高的冷却速率下,包晶反应过程会出现块状转变。根据研究结果,本研究确定了热冲压钢的铁素体生长率/二次枝晶臂间距与冷却速率之间的关系。此外,还提出了连铸和二次冷却工艺参数的潜在优化策略,以提高薄板坯生产工艺的先进性。这些优化方法由结合数值模拟进行的指导性实验提供信息,最终促进了实际生产实践的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信