Efficient removal of emerging pollutant oxytetracycline by cost‐effective biochar–hydroxyapatite composite

IF 1.8 4区 工程技术 Q3 Chemical Engineering
Quang Minh Tran, Phuong Thu Le, Thu Phuong Nguyen, Hong Nam Nguyen, Thi Hai Do, Trung Dung Nguyen, Thi Mai Thanh Dinh
{"title":"Efficient removal of emerging pollutant oxytetracycline by cost‐effective biochar–hydroxyapatite composite","authors":"Quang Minh Tran, Phuong Thu Le, Thu Phuong Nguyen, Hong Nam Nguyen, Thi Hai Do, Trung Dung Nguyen, Thi Mai Thanh Dinh","doi":"10.1002/apj.3124","DOIUrl":null,"url":null,"abstract":"Biochar (BC) and hydroxyapatite (HAp) are widely used in environmental remediation due to their high adsorption capacity, porous structure, large specific surface area, chemical stability, non‐toxicity, and low solubility. Combining BC and HAp is a green and effective strategy for creating new adsorbents (BCH) that have a synergistic impact on wastewater treatment. In this study, BCH composites derived from apatite ore and macadamia nut shells were synthesized by the wet impregnation method to remove oxytetracycline (OTC) from aqueous solutions. The BC‐HAp composite with a ratio of 10:1 (by weight) was the most effective material for removing OTC. The Redlich–Peterson model achieved the highest correlation coefficient among the four models tested (Freundlich, Langmuir, Temkin, and Redlich–Peterson). The maximum adsorption capacity calculated with the Langmuir isotherm was 49.59 mg g<jats:sup>−1</jats:sup>. It was found that the adsorption process was significantly affected by the solution pH. The bipolar form of the drug was found to be OTC<jats:sup>±</jats:sup>, and the adsorption was most effective in solutions with a pH of 6. The OTC adsorption dominant mechanisms on nanocomposites could be electrostatic attraction, hydrogen bonding formation, surface complexation, or ion exchange. Therefore, the BCH composite showed great potential for removing OTC pollutants in a cost‐effective, and environmentally friendly manner.","PeriodicalId":8852,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"1419 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/apj.3124","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Biochar (BC) and hydroxyapatite (HAp) are widely used in environmental remediation due to their high adsorption capacity, porous structure, large specific surface area, chemical stability, non‐toxicity, and low solubility. Combining BC and HAp is a green and effective strategy for creating new adsorbents (BCH) that have a synergistic impact on wastewater treatment. In this study, BCH composites derived from apatite ore and macadamia nut shells were synthesized by the wet impregnation method to remove oxytetracycline (OTC) from aqueous solutions. The BC‐HAp composite with a ratio of 10:1 (by weight) was the most effective material for removing OTC. The Redlich–Peterson model achieved the highest correlation coefficient among the four models tested (Freundlich, Langmuir, Temkin, and Redlich–Peterson). The maximum adsorption capacity calculated with the Langmuir isotherm was 49.59 mg g−1. It was found that the adsorption process was significantly affected by the solution pH. The bipolar form of the drug was found to be OTC±, and the adsorption was most effective in solutions with a pH of 6. The OTC adsorption dominant mechanisms on nanocomposites could be electrostatic attraction, hydrogen bonding formation, surface complexation, or ion exchange. Therefore, the BCH composite showed great potential for removing OTC pollutants in a cost‐effective, and environmentally friendly manner.
利用具有成本效益的生物炭-羟基磷灰石复合材料高效去除新出现的污染物土霉素
生物炭(BC)和羟基磷灰石(HAp)具有吸附能力强、多孔结构、比表面积大、化学性质稳定、无毒、溶解度低等特点,因此被广泛应用于环境修复领域。将 BC 和 HAp 结合在一起是一种绿色、有效的策略,可制造出对废水处理具有协同作用的新型吸附剂(BCH)。本研究采用湿法浸渍法合成了从磷灰石矿石和澳洲坚果壳中提取的 BCH 复合材料,用于去除水溶液中的土霉素(OTC)。重量比为 10:1 的 BC-HAp 复合材料是去除 OTC 最有效的材料。在测试的四种模型(Freundlich、Langmuir、Temkin 和 Redlich-Peterson)中,Redlich-Peterson 模型的相关系数最高。用 Langmuir 等温线计算的最大吸附容量为 49.59 毫克 g-1。研究发现,吸附过程受溶液 pH 值的影响很大。OTC 在纳米复合材料上的吸附主导机制可能是静电吸引、氢键形成、表面络合或离子交换。因此,BCH 复合材料在以经济、环保的方式去除 OTC 污染物方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asia-Pacific Journal of Chemical Engineering
Asia-Pacific Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.50
自引率
11.10%
发文量
111
审稿时长
2.8 months
期刊介绍: Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration. Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信