The reanimation of pseudoscience in machine learning and its ethical repercussions

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"The reanimation of pseudoscience in machine learning and its ethical repercussions","authors":"","doi":"10.1016/j.patter.2024.101027","DOIUrl":null,"url":null,"abstract":"<p>The present perspective outlines how epistemically baseless and ethically pernicious paradigms are recycled back into the scientific literature via machine learning (ML) and explores connections between these two dimensions of failure. We hold up the renewed emergence of physiognomic methods, facilitated by ML, as a case study in the harmful repercussions of ML-laundered junk science. A summary and analysis of several such studies is delivered, with attention to the means by which unsound research lends itself to social harms. We explore some of the many factors contributing to poor practice in applied ML. In conclusion, we offer resources for research best practices to developers and practitioners.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The present perspective outlines how epistemically baseless and ethically pernicious paradigms are recycled back into the scientific literature via machine learning (ML) and explores connections between these two dimensions of failure. We hold up the renewed emergence of physiognomic methods, facilitated by ML, as a case study in the harmful repercussions of ML-laundered junk science. A summary and analysis of several such studies is delivered, with attention to the means by which unsound research lends itself to social harms. We explore some of the many factors contributing to poor practice in applied ML. In conclusion, we offer resources for research best practices to developers and practitioners.

机器学习中伪科学的复活及其伦理反响
本视角概述了在认识论上毫无根据、在伦理道德上有害的范式是如何通过机器学习(ML)重新回到科学文献中的,并探讨了这两方面失败之间的联系。我们将机器学习推动下重新出现的相貌学方法作为一个案例,研究机器学习垃圾科学的有害影响。我们将对几项此类研究进行总结和分析,并关注不靠谱的研究是如何造成社会危害的。我们探讨了造成应用 ML 不良实践的诸多因素。最后,我们为开发人员和从业人员提供了研究最佳实践的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信