{"title":"Enhancing RNA inhibitory activity using clamp-G-modified nucleobases","authors":"","doi":"10.1016/j.xcrp.2024.102120","DOIUrl":null,"url":null,"abstract":"<p>We explore the potential of clamp-G nucleobase-modified peptide nucleic acids (cGPNAs) as microRNA and messenger RNA inhibitors. For proof of concept, we target miR-155, which is upregulated in diffuse large B cell lymphoma. cGPNA shows significant downregulation of miR-155 and the upregulation of its downstream targets in multiple lymphoma cell lines. Also, cGPNA treatment <em>in vivo</em> reduced tumor growth and improved survival in the U2932 cell-derived xenograft mouse model. To assess the broad application of cGPNA as an antisense modality, we also target transthyretin (<em>TTR</em>) mRNA. We establish a dose-dependent effect of antisense cGPNA on <em>TTR</em> mRNA levels. For <em>in vivo</em> studies, we conjugated cGPNA-based TTR antisense with lactobionic acid-based targeting ligand for <em>in vivo</em> liver delivery. We establish that cGPNA exhibits significant TTR protein knockdown compared to unmodified peptide nucleic acid (PNA) <em>in vivo</em>. Overall, we confirm that clamp-G-modified PNA analogs are a robust antisense therapy platform.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"262 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102120","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We explore the potential of clamp-G nucleobase-modified peptide nucleic acids (cGPNAs) as microRNA and messenger RNA inhibitors. For proof of concept, we target miR-155, which is upregulated in diffuse large B cell lymphoma. cGPNA shows significant downregulation of miR-155 and the upregulation of its downstream targets in multiple lymphoma cell lines. Also, cGPNA treatment in vivo reduced tumor growth and improved survival in the U2932 cell-derived xenograft mouse model. To assess the broad application of cGPNA as an antisense modality, we also target transthyretin (TTR) mRNA. We establish a dose-dependent effect of antisense cGPNA on TTR mRNA levels. For in vivo studies, we conjugated cGPNA-based TTR antisense with lactobionic acid-based targeting ligand for in vivo liver delivery. We establish that cGPNA exhibits significant TTR protein knockdown compared to unmodified peptide nucleic acid (PNA) in vivo. Overall, we confirm that clamp-G-modified PNA analogs are a robust antisense therapy platform.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.