{"title":"Analog and linearity performance analysis of ferroelectric vertical tunnel field effect transistor with and without source pocket","authors":"Ashish Kumar Singh, Ramesh Kumar, Heranmoy Maity, Prabhat Singh, Sarabdeep Singh","doi":"10.1002/jnm.3274","DOIUrl":null,"url":null,"abstract":"<p>This study examines the electrical performance characteristics of a ferroelectric vertical tunnel field-effect transistor (TFET) with and without a source pocket (Si<sub>0.5</sub>Ge<sub>0.5</sub>). The incorporation of Germanium in the source of the TFET aims to enhance the on-current. The Silvaco TCAD simulation tool is utilized to simulate the proposed structure. To improve device performance, a ferroelectric layer with a vertical length is employed in the gate of the TFET. When the ferroelectric layer partially controls the channel region, device characteristics, such as on-current and subthreshold swing (SS) can be improved (i.e., <i>I</i><sub>ON</sub> = 15.21 × 10<sup>−5</sup> A/μm, <i>I</i><sub>ON</sub>/<i>I</i><sub>OFF</sub> = 5.03 × 10<sup>9</sup>, and a minimum SS of 20.87 mV/decade at 300 K). This article studied a comparison between ferroelectric vertical TFETs and nonferroelectric vertical TFETs, as well as ferroelectric vertical TFETs with and without source pockets. The comparison is done on the basis of DC and RF parameters. Analysis of this comparison represents that ferroelectric vertical TFET with source pocket has improved characteristics.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3274","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the electrical performance characteristics of a ferroelectric vertical tunnel field-effect transistor (TFET) with and without a source pocket (Si0.5Ge0.5). The incorporation of Germanium in the source of the TFET aims to enhance the on-current. The Silvaco TCAD simulation tool is utilized to simulate the proposed structure. To improve device performance, a ferroelectric layer with a vertical length is employed in the gate of the TFET. When the ferroelectric layer partially controls the channel region, device characteristics, such as on-current and subthreshold swing (SS) can be improved (i.e., ION = 15.21 × 10−5 A/μm, ION/IOFF = 5.03 × 109, and a minimum SS of 20.87 mV/decade at 300 K). This article studied a comparison between ferroelectric vertical TFETs and nonferroelectric vertical TFETs, as well as ferroelectric vertical TFETs with and without source pockets. The comparison is done on the basis of DC and RF parameters. Analysis of this comparison represents that ferroelectric vertical TFET with source pocket has improved characteristics.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.