Combination of white and green/red LED lights influence growth, antioxidant properties, mineral composition and ginsenosides content of Panax ginseng sprouts in controlled environment system

IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jayabalan Shilpha, Kyungdeok Noh, Jingli Yang, Seon-In Yeom, Byoung Ryong Jeong
{"title":"Combination of white and green/red LED lights influence growth, antioxidant properties, mineral composition and ginsenosides content of Panax ginseng sprouts in controlled environment system","authors":"Jayabalan Shilpha, Kyungdeok Noh, Jingli Yang, Seon-In Yeom, Byoung Ryong Jeong","doi":"10.1007/s11240-024-02824-3","DOIUrl":null,"url":null,"abstract":"<p>The spectral quality of light regulates plant growth through a variety of physiological, biochemical, and molecular processes. Earlier research on ginseng sprouts have largely focused on the impact of monochromatic lights, with limited attention to combinations with white light. The present study explored the influence of white light supplemented with different wavelengths on ginseng sprout growth at both low (30) and high (200) µmol m<sup>− 2</sup> s<sup>− 1</sup> PPFD intensities. Significant variations in growth were noted between the two light intensities. Specifically, the green light combination proved advantageous for enhancing both growth and photosynthesis across both intensity levels. The chlorophyll fluorescence characteristics, stomatal properties, total soluble sugars, total soluble proteins, and root activity were notably enhanced by W + G (200 PPFD) treatment. Enzymatic and non-enzymatic antioxidant activities were predominantly influenced by W + R treatments at both intensity levels. Low light, particularly, W + R (30 PPFD) and W + G (30 PPFD) significantly increased mineral content in both the shoot and root. Low light intensities positively influenced the accumulation of ginsenosides Rd, F<sub>2</sub>, and Rg<sub>1</sub> in treatments W, W + R, and W + G, respectively while Rd<sub>2</sub> accumulation was greatly promoted by high intensity white light treatment, W (200 PPFD). Gene expression involved in the ginsenoside biosynthesis pathway aligned with ginsenoside accumulation. Therefore, to meet the growing demand for ginseng sprouts, optimizing light quality, particularly by incorporating green or red light in conjunction with white light, might serve as a promising approach for enhancing both the quality and yield of ginseng sprouts within the controlled environment agriculture system.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell, Tissue and Organ Culture","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02824-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The spectral quality of light regulates plant growth through a variety of physiological, biochemical, and molecular processes. Earlier research on ginseng sprouts have largely focused on the impact of monochromatic lights, with limited attention to combinations with white light. The present study explored the influence of white light supplemented with different wavelengths on ginseng sprout growth at both low (30) and high (200) µmol m− 2 s− 1 PPFD intensities. Significant variations in growth were noted between the two light intensities. Specifically, the green light combination proved advantageous for enhancing both growth and photosynthesis across both intensity levels. The chlorophyll fluorescence characteristics, stomatal properties, total soluble sugars, total soluble proteins, and root activity were notably enhanced by W + G (200 PPFD) treatment. Enzymatic and non-enzymatic antioxidant activities were predominantly influenced by W + R treatments at both intensity levels. Low light, particularly, W + R (30 PPFD) and W + G (30 PPFD) significantly increased mineral content in both the shoot and root. Low light intensities positively influenced the accumulation of ginsenosides Rd, F2, and Rg1 in treatments W, W + R, and W + G, respectively while Rd2 accumulation was greatly promoted by high intensity white light treatment, W (200 PPFD). Gene expression involved in the ginsenoside biosynthesis pathway aligned with ginsenoside accumulation. Therefore, to meet the growing demand for ginseng sprouts, optimizing light quality, particularly by incorporating green or red light in conjunction with white light, might serve as a promising approach for enhancing both the quality and yield of ginseng sprouts within the controlled environment agriculture system.

Abstract Image

在受控环境系统中,白光和绿/红光 LED 灯组合影响三七芽的生长、抗氧化性、矿物质成分和人参皂苷含量
光的光谱质量通过各种生理、生化和分子过程调节植物的生长。早期对人参芽的研究主要集中在单色光的影响上,对白光的组合关注有限。本研究探讨了在低(30)和高(200)µmol m- 2 s- 1 PPFD 强度下,补充不同波长的白光对人参新芽生长的影响。在两种光照强度下,人参萌芽的生长有显著差异。具体来说,绿光组合在两种光照强度下都有利于提高生长和光合作用。W + G(200 PPFD)处理显著增强了叶绿素荧光特征、气孔特性、可溶性总糖、可溶性总蛋白和根系活性。在两种光照强度下,酶和非酶抗氧化活性主要受 W + R 处理的影响。弱光,尤其是 W + R(30 PPFD)和 W + G(30 PPFD)显著增加了芽和根中的矿物质含量。在 W、W + R 和 W + G 处理中,低光照强度分别对人参皂甙 Rd、F2 和 Rg1 的积累产生了积极影响,而高强度白光处理 W(200 PPFD)则极大地促进了 Rd2 的积累。涉及人参皂苷生物合成途径的基因表达与人参皂苷的积累一致。因此,为了满足对人参芽的日益增长的需求,优化光质,特别是在白光的基础上结合绿光或红光,可能是在可控环境农业系统中提高人参芽质量和产量的一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell, Tissue and Organ Culture
Plant Cell, Tissue and Organ Culture 生物-生物工程与应用微生物
CiteScore
5.40
自引率
13.30%
发文量
203
审稿时长
3.3 months
期刊介绍: This journal highlights the myriad breakthrough technologies and discoveries in plant biology and biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC: Journal of Plant Biotechnology) details high-throughput analysis of gene function and expression, gene silencing and overexpression analyses, RNAi, siRNA, and miRNA studies, and much more. It examines the transcriptional and/or translational events involved in gene regulation as well as those molecular controls involved in morphogenesis of plant cells and tissues. The journal also covers practical and applied plant biotechnology, including regeneration, organogenesis and somatic embryogenesis, gene transfer, gene flow, secondary metabolites, metabolic engineering, and impact of transgene(s) dissemination into managed and unmanaged plant systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信