Differential elastic scattering and electron-impact ionization cross sections of nitrous oxide

IF 1.5 4区 物理与天体物理 Q3 OPTICS
M. Dinger, Y. Park, W. Y. Baek
{"title":"Differential elastic scattering and electron-impact ionization cross sections of nitrous oxide","authors":"M. Dinger,&nbsp;Y. Park,&nbsp;W. Y. Baek","doi":"10.1140/epjd/s10053-024-00880-0","DOIUrl":null,"url":null,"abstract":"<div><p>With the aim of providing datasets for simulations of electron transport processes in the upper atmosphere, we measured singly differential elastic electron scattering and doubly differential electron-impact ionization cross sections of nitrous oxide. These measurements were conducted for primary electron energies between 30 eV and 1 keV in the angular range of 20°–150°. Secondary electron energies spanned from 4 eV to approximately half of the primary electron energy. In addition to the measurements, the differential elastic scattering cross sections of nitrous oxide were calculated using the IAM-SCAR + I model. Furthermore, the singly differential and total ionization cross sections of nitrous oxide were obtained by integrating the doubly differential ionization cross sections over emission angle and over both emission angle and secondary electron energy, respectively. These cross sections were compared to calculations performed using the BEB model and to experimental results of other groups, who determined the total ionization cross sections of nitrous oxide by collecting ions generated during electron impact.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjd/s10053-024-00880-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00880-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

With the aim of providing datasets for simulations of electron transport processes in the upper atmosphere, we measured singly differential elastic electron scattering and doubly differential electron-impact ionization cross sections of nitrous oxide. These measurements were conducted for primary electron energies between 30 eV and 1 keV in the angular range of 20°–150°. Secondary electron energies spanned from 4 eV to approximately half of the primary electron energy. In addition to the measurements, the differential elastic scattering cross sections of nitrous oxide were calculated using the IAM-SCAR + I model. Furthermore, the singly differential and total ionization cross sections of nitrous oxide were obtained by integrating the doubly differential ionization cross sections over emission angle and over both emission angle and secondary electron energy, respectively. These cross sections were compared to calculations performed using the BEB model and to experimental results of other groups, who determined the total ionization cross sections of nitrous oxide by collecting ions generated during electron impact.

Graphical abstract

Abstract Image

一氧化二氮的差弹性散射和电子撞击电离截面
为了给模拟高层大气电子传输过程提供数据集,我们测量了一氧化二氮的单差分弹性电子散射和双差分电子撞击电离截面。这些测量是在 20°-150° 角范围内对 30 eV 至 1 keV 的一次电子能量进行的。二次电子能量的范围从 4 eV 到一次电子能量的一半左右。除测量结果外,还利用 IAM-SCAR + I 模型计算了一氧化二氮的差分弹性散射截面。此外,通过对发射角的双差分电离截面以及发射角和二次电子能量的双差分电离截面进行积分,分别得到了一氧化二氮的单差分电离截面和总电离截面。这些截面与使用 BEB 模型进行的计算结果以及其他研究小组的实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal D
The European Physical Journal D 物理-物理:原子、分子和化学物理
CiteScore
3.10
自引率
11.10%
发文量
213
审稿时长
3 months
期刊介绍: The European Physical Journal D (EPJ D) presents new and original research results in: Atomic Physics; Molecular Physics and Chemical Physics; Atomic and Molecular Collisions; Clusters and Nanostructures; Plasma Physics; Laser Cooling and Quantum Gas; Nonlinear Dynamics; Optical Physics; Quantum Optics and Quantum Information; Ultraintense and Ultrashort Laser Fields. The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信