{"title":"Grid study on methane diffusion law in confined space of working face","authors":"Qian-Kun Zhao, Shi-Jia Qu, Jian Wang, Huan Yang","doi":"10.1002/ese3.1854","DOIUrl":null,"url":null,"abstract":"<p>The layout of methane sensors in the working face cannot meet the needs for monitoring methane concentrations within confined spaces, and it is challenging to determine the precise locations for manual inspections. Therefore, the working face is firstly divided into different areas and grids. Then combined with the characteristics of methane emissions and the measured data on site, the boundary conditions of simulation experiments are set up and the research is carried out on the diffusion law of methane in the confined space of the working face under different conditions. The experimental results show that methane emission intensity from coal walls affects its distribution. As emission intensity rises, methane nearer the coal wall decreases, while methane further away increases. Among coal mining points, point 2 shows the widest methane diffusion range. Rising wind speeds decrease methane diffusion from the coal wall, increasing vertical diffusion distance. Methane from the coal wall shifts to the air inlet, while methane from the mining point diffuses increasingly to the downwind side. The location of the maximum methane concentration generated from falling coal and its transportation process is only related to the location of the coal mining point. The key areas for methane monitoring in confined spaces of the working face should be the overlapping locations of the vertical-3 and vertical-4 areas and the horizontal-1 and horizontal-3 areas. The key areas for manual inspection should be the overlapping locations of the vertical-2 and vertical-3 areas and the horizontal-1 area.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1854","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1854","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The layout of methane sensors in the working face cannot meet the needs for monitoring methane concentrations within confined spaces, and it is challenging to determine the precise locations for manual inspections. Therefore, the working face is firstly divided into different areas and grids. Then combined with the characteristics of methane emissions and the measured data on site, the boundary conditions of simulation experiments are set up and the research is carried out on the diffusion law of methane in the confined space of the working face under different conditions. The experimental results show that methane emission intensity from coal walls affects its distribution. As emission intensity rises, methane nearer the coal wall decreases, while methane further away increases. Among coal mining points, point 2 shows the widest methane diffusion range. Rising wind speeds decrease methane diffusion from the coal wall, increasing vertical diffusion distance. Methane from the coal wall shifts to the air inlet, while methane from the mining point diffuses increasingly to the downwind side. The location of the maximum methane concentration generated from falling coal and its transportation process is only related to the location of the coal mining point. The key areas for methane monitoring in confined spaces of the working face should be the overlapping locations of the vertical-3 and vertical-4 areas and the horizontal-1 and horizontal-3 areas. The key areas for manual inspection should be the overlapping locations of the vertical-2 and vertical-3 areas and the horizontal-1 area.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.