Three-dimensional MXene/carbon nanotube composite electrodes in flexible 64-channel arrays for noninvasive electromyography signal acquisition

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lian Cheng  (, ), Aiying Guo  (, ), Jun Li  (, ), Mengjiao Li  (, ), Qiang Lei  (, ), Wen Xu  (, ), Xiaolin Guo  (, ), Jianhua Zhang  (, )
{"title":"Three-dimensional MXene/carbon nanotube composite electrodes in flexible 64-channel arrays for noninvasive electromyography signal acquisition","authors":"Lian Cheng \n (,&nbsp;),&nbsp;Aiying Guo \n (,&nbsp;),&nbsp;Jun Li \n (,&nbsp;),&nbsp;Mengjiao Li \n (,&nbsp;),&nbsp;Qiang Lei \n (,&nbsp;),&nbsp;Wen Xu \n (,&nbsp;),&nbsp;Xiaolin Guo \n (,&nbsp;),&nbsp;Jianhua Zhang \n (,&nbsp;)","doi":"10.1007/s40843-024-2994-0","DOIUrl":null,"url":null,"abstract":"<div><p>Non-invasive surface electromyography (sEMG) electrodes have vast potential in fields such as healthcare, human-computer interaction, and entertainment, providing diverse information related to electromyographic signals. Non-invasive sEMG electrodes reduce user risks but gather sEMG signals of lower quality compared to invasive ones. Currently, various advanced electrode materials have been developed for detecting physiological electrical signals, but the majority of them are single channel electrodes. Here, we report 64-channel three-dimensional (3D) Ti<sub>3</sub>C<sub>2</sub> MXene/CNT composite electrodes fabricated using bonding-driven self-assembly technologies. These electrodes are characterized by low skin-electrode contact impedance and a high signal-to-noise ratio (SNR) for collection of EMG signals. These electrode arrays exhibit remarkable flexibility, conforming seamlessly to the skin’s curvature. Specifically, the skin-electrode contact impedance of 3D Ti<sub>3</sub>C<sub>2</sub> MXene/CNT electrodes decreases by 10-fold compared to Ag/AgCl gel electrodes at a frequency of 100 Hz. Furthermore, when collecting sEMG signals from the arm, the prepared Ti<sub>3</sub>C<sub>2</sub> MXene/CNT electrodes exhibit lower baseline noise and higher SNR compared to Ag/AgCl gel electrodes. Furthermore, Ti<sub>3</sub>C<sub>2</sub> MXene/CNT electrodes can collect sEMG signals of different hand gestures, while maintaining a high SNR (∼25 dB). By combining machine learning, sEMG signals from different gestures can be identified with a recognition rate exceeding 90%. The exceptional performance and scalability of these 3D Ti<sub>3</sub>C<sub>2</sub> MXene/CNT electrodes indicate a promising future for shaping electronic skin and wearable device technologies.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 9","pages":"2977 - 2984"},"PeriodicalIF":6.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-2994-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-invasive surface electromyography (sEMG) electrodes have vast potential in fields such as healthcare, human-computer interaction, and entertainment, providing diverse information related to electromyographic signals. Non-invasive sEMG electrodes reduce user risks but gather sEMG signals of lower quality compared to invasive ones. Currently, various advanced electrode materials have been developed for detecting physiological electrical signals, but the majority of them are single channel electrodes. Here, we report 64-channel three-dimensional (3D) Ti3C2 MXene/CNT composite electrodes fabricated using bonding-driven self-assembly technologies. These electrodes are characterized by low skin-electrode contact impedance and a high signal-to-noise ratio (SNR) for collection of EMG signals. These electrode arrays exhibit remarkable flexibility, conforming seamlessly to the skin’s curvature. Specifically, the skin-electrode contact impedance of 3D Ti3C2 MXene/CNT electrodes decreases by 10-fold compared to Ag/AgCl gel electrodes at a frequency of 100 Hz. Furthermore, when collecting sEMG signals from the arm, the prepared Ti3C2 MXene/CNT electrodes exhibit lower baseline noise and higher SNR compared to Ag/AgCl gel electrodes. Furthermore, Ti3C2 MXene/CNT electrodes can collect sEMG signals of different hand gestures, while maintaining a high SNR (∼25 dB). By combining machine learning, sEMG signals from different gestures can be identified with a recognition rate exceeding 90%. The exceptional performance and scalability of these 3D Ti3C2 MXene/CNT electrodes indicate a promising future for shaping electronic skin and wearable device technologies.

Abstract Image

用于无创肌电信号采集的柔性 64 通道阵列中的三维 MXene/碳纳米管复合电极
无创表面肌电图(sEMG)电极在医疗保健、人机交互和娱乐等领域具有巨大潜力,可提供与肌电信号相关的各种信息。非侵入式 sEMG 电极可降低用户风险,但与侵入式电极相比,其收集的 sEMG 信号质量较低。目前,用于检测生理电信号的先进电极材料层出不穷,但大多数都是单通道电极。在此,我们报告了利用粘接驱动自组装技术制造的 64 通道三维(3D)Ti3C2 MXene/CNT 复合电极。这些电极的特点是皮肤-电极接触阻抗低,信噪比(SNR)高,可用于采集肌电信号。这些电极阵列具有出色的灵活性,能无缝贴合皮肤的弧度。具体来说,在频率为 100 Hz 时,三维 Ti3C2 MXene/CNT 电极的皮肤-电极接触阻抗比 Ag/AgCl 凝胶电极降低了 10 倍。此外,在收集手臂的 sEMG 信号时,制备的 Ti3C2 MXene/CNT 电极与 Ag/AgCl 凝胶电极相比,基线噪声更低,信噪比更高。此外,Ti3C2 MXene/CNT 电极还能收集不同手势的 sEMG 信号,同时保持较高的信噪比(∼25 dB)。通过结合机器学习,可以识别不同手势的 sEMG 信号,识别率超过 90%。这些三维 Ti3C2 MXene/CNT 电极的卓越性能和可扩展性预示着塑造电子皮肤和可穿戴设备技术的美好前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信