Synthesis and Optimization of a Stochastic Algorithm for Image Registration Using Shannon’s Maximum Mutual Information Criterion

IF 0.5 Q4 PHYSICS, MULTIDISCIPLINARY
A. G. Tashlinskii, R. M. Ibragimov, G. L. Safina
{"title":"Synthesis and Optimization of a Stochastic Algorithm for Image Registration Using Shannon’s Maximum Mutual Information Criterion","authors":"A. G. Tashlinskii, R. M. Ibragimov, G. L. Safina","doi":"10.3103/s8756699024700213","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>An algorithm for estimating image registration parameters using Shannon’s maximum mutual information criterion is synthesized on the basis of the mathematical methods of stochastic gradient adaptation. Expressions for the gradient of mutual information are obtained. At the same time, the derivatives of the entropy of images with respect to the estimated parameters are found using the Parzen window method. The synthesized algorithm is optimized to improve performance.</p>","PeriodicalId":44919,"journal":{"name":"Optoelectronics Instrumentation and Data Processing","volume":"85 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optoelectronics Instrumentation and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s8756699024700213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An algorithm for estimating image registration parameters using Shannon’s maximum mutual information criterion is synthesized on the basis of the mathematical methods of stochastic gradient adaptation. Expressions for the gradient of mutual information are obtained. At the same time, the derivatives of the entropy of images with respect to the estimated parameters are found using the Parzen window method. The synthesized algorithm is optimized to improve performance.

Abstract Image

利用香农最大互信息标准合成和优化图像注册随机算法
摘要 在随机梯度适应数学方法的基础上,提出了一种利用香农最大互信息准则估计图像配准参数的算法。得到了互信息梯度的表达式。同时,使用 Parzen 窗口法求得图像熵相对于估计参数的导数。对合成算法进行了优化,以提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
50.00%
发文量
16
期刊介绍: The scope of Optoelectronics, Instrumentation and Data Processing encompasses, but is not restricted to, the following areas: analysis and synthesis of signals and images; artificial intelligence methods; automated measurement systems; physicotechnical foundations of micro- and optoelectronics; optical information technologies; systems and components; modelling in physicotechnical research; laser physics applications; computer networks and data transmission systems. The journal publishes original papers, reviews, and short communications in order to provide the widest possible coverage of latest research and development in its chosen field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信