SNRBERT: session-based news recommender using BERT

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS
Ali Azizi, Saeedeh Momtazi
{"title":"SNRBERT: session-based news recommender using BERT","authors":"Ali Azizi, Saeedeh Momtazi","doi":"10.1007/s11257-024-09409-x","DOIUrl":null,"url":null,"abstract":"<p>In recent years, research on transformer-based recommender systems has attracted a lot of attention. Our work examines how BERT, a transformer-based contextual language model, can be applied to build a session-based news recommender system. The session-based approach aims to recommend news by creating profiles for users and items and recommending items accordingly to maximize session length. The proposed model, called SNRBERT (Session-Based News Recommender using BERT), is fine-tuned to estimate the relationship between each user and item in a given session based on the interactions between the user and the item during that session. We introduce this method to address the challenges of session-based news recommendation, particularly in maximizing session length and capturing user–item relationships effectively. Given the limited information available about user preferences in session-based scenarios, the model estimates a score based on the amount of time users spend on each item in each session. The news recommendation is then performed based on this score. On top of BERT, we employed an Bi-LSTM network in order to capture more accurate information regarding the order in which users interact with items during a given session. We compare our results with the state-of-the-art models by using commonly known metrics: MRR, HR, and NDCG on the Adressa dataset, one of the most comprehensive datasets publicly available. Our results show that our SNRBERT model achieves HR@10 of 0.688, MRR@10 of 0.315, and nDCG@10 of 0.338. These results demonstrate that SNRBERT outperforms state-of-the-art models in terms of MRR@10 and HR@10 metrics, showcasing its effectiveness in addressing the challenges of session-based news recommendation.</p>","PeriodicalId":49388,"journal":{"name":"User Modeling and User-Adapted Interaction","volume":"45 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"User Modeling and User-Adapted Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11257-024-09409-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, research on transformer-based recommender systems has attracted a lot of attention. Our work examines how BERT, a transformer-based contextual language model, can be applied to build a session-based news recommender system. The session-based approach aims to recommend news by creating profiles for users and items and recommending items accordingly to maximize session length. The proposed model, called SNRBERT (Session-Based News Recommender using BERT), is fine-tuned to estimate the relationship between each user and item in a given session based on the interactions between the user and the item during that session. We introduce this method to address the challenges of session-based news recommendation, particularly in maximizing session length and capturing user–item relationships effectively. Given the limited information available about user preferences in session-based scenarios, the model estimates a score based on the amount of time users spend on each item in each session. The news recommendation is then performed based on this score. On top of BERT, we employed an Bi-LSTM network in order to capture more accurate information regarding the order in which users interact with items during a given session. We compare our results with the state-of-the-art models by using commonly known metrics: MRR, HR, and NDCG on the Adressa dataset, one of the most comprehensive datasets publicly available. Our results show that our SNRBERT model achieves HR@10 of 0.688, MRR@10 of 0.315, and nDCG@10 of 0.338. These results demonstrate that SNRBERT outperforms state-of-the-art models in terms of MRR@10 and HR@10 metrics, showcasing its effectiveness in addressing the challenges of session-based news recommendation.

Abstract Image

SNRBERT:使用 BERT 的基于会话的新闻推荐器
近年来,关于基于转换器的推荐系统的研究引起了广泛关注。我们的工作研究了如何将基于转换器的上下文语言模型 BERT 应用于构建基于会话的新闻推荐系统。基于会话的方法旨在通过为用户和项目创建档案来推荐新闻,并相应地推荐项目,以最大限度地延长会话时间。我们提出的模型被称为 SNRBERT(Session-Based News Recommender using BERT),该模型经过微调,可根据用户与项目在特定会话期间的互动情况,估计该会话中每个用户与项目之间的关系。我们引入这种方法是为了解决基于会话的新闻推荐所面临的挑战,尤其是在最大化会话长度和有效捕捉用户与项目关系方面。鉴于在基于会话的场景中用户偏好的信息有限,该模型根据用户在每个会话中花费在每个项目上的时间来估算分数。然后根据这个分数进行新闻推荐。在 BERT 的基础上,我们采用了 Bi-LSTM 网络,以获取更准确的信息,了解用户在给定会话中与项目交互的顺序。我们使用常见的指标将我们的结果与最先进的模型进行了比较:MRR、HR 和 NDCG。结果显示,SNRBERT 模型的 HR@10 为 0.688,MRR@10 为 0.315,nDCG@10 为 0.338。这些结果表明,就 MRR@10 和 HR@10 指标而言,SNRBERT 优于最先进的模型,从而展示了其在应对基于会话的新闻推荐挑战方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
User Modeling and User-Adapted Interaction
User Modeling and User-Adapted Interaction 工程技术-计算机:控制论
CiteScore
8.90
自引率
8.30%
发文量
35
审稿时长
>12 weeks
期刊介绍: User Modeling and User-Adapted Interaction provides an interdisciplinary forum for the dissemination of novel and significant original research results about interactive computer systems that can adapt themselves to their users, and on the design, use, and evaluation of user models for adaptation. The journal publishes high-quality original papers from, e.g., the following areas: acquisition and formal representation of user models; conceptual models and user stereotypes for personalization; student modeling and adaptive learning; models of groups of users; user model driven personalised information discovery and retrieval; recommender systems; adaptive user interfaces and agents; adaptation for accessibility and inclusion; generic user modeling systems and tools; interoperability of user models; personalization in areas such as; affective computing; ubiquitous and mobile computing; language based interactions; multi-modal interactions; virtual and augmented reality; social media and the Web; human-robot interaction; behaviour change interventions; personalized applications in specific domains; privacy, accountability, and security of information for personalization; responsible adaptation: fairness, accountability, explainability, transparency and control; methods for the design and evaluation of user models and adaptive systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信