A potential acaricide of Moutan Cortex essential oil encapsulated in nanoemulsion and mesoporous silica nanoparticles against the house dust mite Dermatophagoides farinae

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY
Qiao Teng, Yuanyuan Li, Yuanyuan Cai, Junjie Guo, Minghui Zou, Qiqi Xue, Xiaoniu Tang, Xiangzi Li, Jinhong Zhao
{"title":"A potential acaricide of Moutan Cortex essential oil encapsulated in nanoemulsion and mesoporous silica nanoparticles against the house dust mite Dermatophagoides farinae","authors":"Qiao Teng, Yuanyuan Li, Yuanyuan Cai, Junjie Guo, Minghui Zou, Qiqi Xue, Xiaoniu Tang, Xiangzi Li, Jinhong Zhao","doi":"10.1007/s10340-024-01820-y","DOIUrl":null,"url":null,"abstract":"<p>Moutan Cortex essential oil (MCEO) is considered to be a promising botanical insecticide. However, like most oils, MECO has several limitations, including instability and poor solubility. Nanoencapsulation technology is an excellent strategy for stabilizing essential oils because of its controlled release, enhanced efficacy, and strengthened biological activity. The present study investigated the acaricidal efficacy of pure MCEO and its encapsulated nanoemulsion (NE) and mesoporous silica nanoparticles (MSNs) against the house dust mite <i>Dermatophagoides farinae</i> using contact bioassays, fumigant bioassays, repellent bioassays, and the observation of toxic symptoms. MCEO-MSNs obtained in the study successfully encapsulated MCEO with an encapsulation efficiency of 63.83%. The acaricidal mortality experiments revealed that MCEO-NE and MCEO-MSN showed more significant toxicity against <i>D. farinae</i> than did pure MCEO. The nanomaterials showed better larvicidal and nymphicidal activities than pure MCEO at a high concentration (12-h LC<sub>90</sub>). Notably, the repellent effect experiment showed that MCEO-NE and MCEO-MSN had long-term and stable repellent effects on <i>D. farinae</i>, indicating the sustained release and persistence of the nanomaterials. More toxicity symptoms were observed in the IM-type group than in the KD-type group, suggesting that the MCEO nanoparticles have adverse effects on the respiratory system. Nanomaterials and MCEO promoted superoxide dismutase (SOD) activity and inhibited acetylcholinesterase (AChE) activity in <i>D. farinae</i>. In addition, the binding sites of paeonol to SOD and AChE were found through molecular docking. These findings demonstrate the potential of MCEO as a biological acaricide, which merits further investigation.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01820-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Moutan Cortex essential oil (MCEO) is considered to be a promising botanical insecticide. However, like most oils, MECO has several limitations, including instability and poor solubility. Nanoencapsulation technology is an excellent strategy for stabilizing essential oils because of its controlled release, enhanced efficacy, and strengthened biological activity. The present study investigated the acaricidal efficacy of pure MCEO and its encapsulated nanoemulsion (NE) and mesoporous silica nanoparticles (MSNs) against the house dust mite Dermatophagoides farinae using contact bioassays, fumigant bioassays, repellent bioassays, and the observation of toxic symptoms. MCEO-MSNs obtained in the study successfully encapsulated MCEO with an encapsulation efficiency of 63.83%. The acaricidal mortality experiments revealed that MCEO-NE and MCEO-MSN showed more significant toxicity against D. farinae than did pure MCEO. The nanomaterials showed better larvicidal and nymphicidal activities than pure MCEO at a high concentration (12-h LC90). Notably, the repellent effect experiment showed that MCEO-NE and MCEO-MSN had long-term and stable repellent effects on D. farinae, indicating the sustained release and persistence of the nanomaterials. More toxicity symptoms were observed in the IM-type group than in the KD-type group, suggesting that the MCEO nanoparticles have adverse effects on the respiratory system. Nanomaterials and MCEO promoted superoxide dismutase (SOD) activity and inhibited acetylcholinesterase (AChE) activity in D. farinae. In addition, the binding sites of paeonol to SOD and AChE were found through molecular docking. These findings demonstrate the potential of MCEO as a biological acaricide, which merits further investigation.

Abstract Image

用纳米乳液和介孔二氧化硅纳米颗粒封装的木丹皮精油对屋尘螨皮螨的潜在杀螨剂
牡丹皮精油(MCEO)被认为是一种很有前途的植物杀虫剂。然而,与大多数精油一样,MECO 也有一些局限性,包括不稳定性和溶解性差。纳米封装技术是稳定精油的绝佳策略,因为它可以控制释放、提高药效并增强生物活性。本研究采用接触生物测定、熏蒸生物测定、驱虫生物测定和中毒症状观察等方法,研究了纯 MCEO 及其封装纳米乳液(NE)和介孔二氧化硅纳米颗粒(MSNs)对家尘螨 Dermatophagoides farinae 的杀螨功效。研究中获得的 MCEO-MSNs 成功封装了 MCEO,封装效率为 63.83%。杀螨实验表明,与纯 MCEO 相比,MCEO-NE 和 MCEO-MSN 对 Farinae 的毒性更为显著。在高浓度下(12-h LC90),纳米材料的杀幼虫和杀若虫活性均优于纯 MCEO。值得注意的是,驱虫效果实验表明,MCEO-NE和MCEO-MSN对D. farinae具有长期稳定的驱虫效果,这表明纳米材料具有持续释放和持久性。IM型组比KD型组观察到更多的毒性症状,表明MCEO纳米颗粒对呼吸系统有不良影响。纳米材料和 MCEO 促进了法氏金龟子体内超氧化物歧化酶(SOD)的活性,抑制了乙酰胆碱酯酶(AChE)的活性。此外,还通过分子对接找到了芍药酚与 SOD 和 AChE 的结合位点。这些发现证明了 MCEO 作为生物杀螨剂的潜力,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信