Alessandro Alla, Agnese Pacifico, Michele Palladino, Andrea Pesare
{"title":"Online identification and control of PDEs via reinforcement learning methods","authors":"Alessandro Alla, Agnese Pacifico, Michele Palladino, Andrea Pesare","doi":"10.1007/s10444-024-10167-y","DOIUrl":null,"url":null,"abstract":"<div><p>We focus on the control of unknown partial differential equations (PDEs). The system dynamics is unknown, but we assume we are able to observe its evolution for a given control input, as typical in a reinforcement learning framework. We propose an algorithm based on the idea to control and identify on the fly the unknown system configuration. In this work, the control is based on the state-dependent Riccati approach, whereas the identification of the model on Bayesian linear regression. At each iteration, based on the observed data, we obtain an estimate of the <i>a-priori</i> unknown parameter configuration of the PDE and then we compute the control of the correspondent model. We show by numerical evidence the convergence of the method for infinite horizon control problems.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10167-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We focus on the control of unknown partial differential equations (PDEs). The system dynamics is unknown, but we assume we are able to observe its evolution for a given control input, as typical in a reinforcement learning framework. We propose an algorithm based on the idea to control and identify on the fly the unknown system configuration. In this work, the control is based on the state-dependent Riccati approach, whereas the identification of the model on Bayesian linear regression. At each iteration, based on the observed data, we obtain an estimate of the a-priori unknown parameter configuration of the PDE and then we compute the control of the correspondent model. We show by numerical evidence the convergence of the method for infinite horizon control problems.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.