Online identification and control of PDEs via reinforcement learning methods

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Alessandro Alla, Agnese Pacifico, Michele Palladino, Andrea Pesare
{"title":"Online identification and control of PDEs via reinforcement learning methods","authors":"Alessandro Alla,&nbsp;Agnese Pacifico,&nbsp;Michele Palladino,&nbsp;Andrea Pesare","doi":"10.1007/s10444-024-10167-y","DOIUrl":null,"url":null,"abstract":"<div><p>We focus on the control of unknown partial differential equations (PDEs). The system dynamics is unknown, but we assume we are able to observe its evolution for a given control input, as typical in a reinforcement learning framework. We propose an algorithm based on the idea to control and identify on the fly the unknown system configuration. In this work, the control is based on the state-dependent Riccati approach, whereas the identification of the model on Bayesian linear regression. At each iteration, based on the observed data, we obtain an estimate of the <i>a-priori</i> unknown parameter configuration of the PDE and then we compute the control of the correspondent model. We show by numerical evidence the convergence of the method for infinite horizon control problems.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10167-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We focus on the control of unknown partial differential equations (PDEs). The system dynamics is unknown, but we assume we are able to observe its evolution for a given control input, as typical in a reinforcement learning framework. We propose an algorithm based on the idea to control and identify on the fly the unknown system configuration. In this work, the control is based on the state-dependent Riccati approach, whereas the identification of the model on Bayesian linear regression. At each iteration, based on the observed data, we obtain an estimate of the a-priori unknown parameter configuration of the PDE and then we compute the control of the correspondent model. We show by numerical evidence the convergence of the method for infinite horizon control problems.

通过强化学习方法对 PDE 进行在线识别和控制
我们将重点放在未知偏微分方程 (PDE) 的控制上。系统动态是未知的,但我们假设能够观察到给定控制输入下的系统演化,这在强化学习框架中很典型。我们根据这一想法提出了一种算法,用于控制和即时识别未知的系统配置。在这项工作中,控制基于与状态相关的里卡提方法,而模型识别则基于贝叶斯线性回归。在每次迭代中,我们都会根据观测到的数据,对 PDE 的先验未知参数配置进行估计,然后计算相应模型的控制。我们通过数值证明了该方法对无限视界控制问题的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信