An evolutionary differential game for regulating the role of monoclonal antibodies in treating signalling pathways in oesophageal cancer.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2024-07-31 eCollection Date: 2024-07-01 DOI:10.1098/rsos.240347
Mesfer Alajmi, Souvik Roy
{"title":"An evolutionary differential game for regulating the role of monoclonal antibodies in treating signalling pathways in oesophageal cancer.","authors":"Mesfer Alajmi, Souvik Roy","doi":"10.1098/rsos.240347","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a new framework for a competitive evolutionary game between monoclonal antibodies and signalling pathways in oesophageal cancer. The framework is based on a novel dynamical model that takes into account the dynamic progression of signalling pathways, resistance mechanisms and monoclonal antibody therapies. This game involves a scenario in which signalling pathways and monoclonal antibodies are the players competing against each other, where monoclonal antibodies use Brentuximab and Pembrolizumab dosages as strategies to counter the evolutionary resistance strategy implemented by the signalling pathways. Their interactions are described by the dynamical model, which serves as the game's playground. The analysis and computation of two game-theoretic strategies, Stackelberg and Nash equilibria, are conducted within this framework to ascertain the most favourable outcome for the patient. By comparing Stackelberg equilibria with Nash equilibria, numerical experiments show that the Stackelberg equilibria are superior for treating signalling pathways and are critical for the success of monoclonal antibodies in improving oesophageal cancer patient outcomes.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289643/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240347","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a new framework for a competitive evolutionary game between monoclonal antibodies and signalling pathways in oesophageal cancer. The framework is based on a novel dynamical model that takes into account the dynamic progression of signalling pathways, resistance mechanisms and monoclonal antibody therapies. This game involves a scenario in which signalling pathways and monoclonal antibodies are the players competing against each other, where monoclonal antibodies use Brentuximab and Pembrolizumab dosages as strategies to counter the evolutionary resistance strategy implemented by the signalling pathways. Their interactions are described by the dynamical model, which serves as the game's playground. The analysis and computation of two game-theoretic strategies, Stackelberg and Nash equilibria, are conducted within this framework to ascertain the most favourable outcome for the patient. By comparing Stackelberg equilibria with Nash equilibria, numerical experiments show that the Stackelberg equilibria are superior for treating signalling pathways and are critical for the success of monoclonal antibodies in improving oesophageal cancer patient outcomes.

调节单克隆抗体在治疗食道癌信号通路中作用的进化差异博弈。
这项研究为食道癌中单克隆抗体与信号通路之间的竞争性进化博弈提出了一个新框架。该框架基于一个新颖的动态模型,该模型考虑了信号通路、抗药性机制和单克隆抗体疗法的动态发展。在这个游戏中,信号通路和单克隆抗体是相互竞争的双方,单克隆抗体使用布仑单抗(Brentuximab)和彭博利珠单抗(Pembrolizumab)的剂量作为策略来对抗信号通路实施的进化抗性策略。它们之间的相互作用由动态模型描述,该模型是博弈的游乐场。在此框架内,对两种博弈论策略--斯塔克尔伯格均衡和纳什均衡--进行了分析和计算,以确定对患者最有利的结果。通过比较斯塔克尔伯格均衡和纳什均衡,数值实验表明斯塔克尔伯格均衡在治疗信号通路方面更胜一筹,是单克隆抗体成功改善食道癌患者预后的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信