The highly differentiated gut of Pachnoda marginata hosts sequential microbiomes: microbial ecology and potential applications.

IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Àngela Vidal-Verdú, Daniel Torrent, Alba Iglesias, Adriel Latorre-Pérez, Christian Abendroth, Paola Corbín-Agustí, Juli Peretó, Manuel Porcar
{"title":"The highly differentiated gut of Pachnoda marginata hosts sequential microbiomes: microbial ecology and potential applications.","authors":"Àngela Vidal-Verdú, Daniel Torrent, Alba Iglesias, Adriel Latorre-Pérez, Christian Abendroth, Paola Corbín-Agustí, Juli Peretó, Manuel Porcar","doi":"10.1038/s41522-024-00531-7","DOIUrl":null,"url":null,"abstract":"<p><p>Insect gut microbiomes play a crucial role in the insect development and are shaped, among other factors, by the specialized insect diet habits as well as the morphological structure of the gut. Rose chafers (Pachnoda spp.; Coleoptera: Scarabaeidae) have a highly differentiated gut characterized by a pronounced hindgut dilation which resembles a miniaturized rumen. Specifically, the species Pachnoda marginata has not been previously studied in detail in terms of microbial ecology. Here, we show a fine scale study of the highly compartmentalized gut of P. marginata by using amplicon and metagenomic sequencing to shed light on the bacterial, archaeal and fungal communities thriving in each section of the gut. We found a microbial gradient along the gut from aerobic (foregut) to strictly anaerobic communities (hindgut). In addition, we have characterized interesting biological activities and metabolic pathways of gut microbial communities related to cellulose degradation, methane production and sulfate reduction. Taken together, our results reveal the highly diverse microbial community and the potential of P. marginata gut as a source of industrially relevant microbial diversity.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291753/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00531-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insect gut microbiomes play a crucial role in the insect development and are shaped, among other factors, by the specialized insect diet habits as well as the morphological structure of the gut. Rose chafers (Pachnoda spp.; Coleoptera: Scarabaeidae) have a highly differentiated gut characterized by a pronounced hindgut dilation which resembles a miniaturized rumen. Specifically, the species Pachnoda marginata has not been previously studied in detail in terms of microbial ecology. Here, we show a fine scale study of the highly compartmentalized gut of P. marginata by using amplicon and metagenomic sequencing to shed light on the bacterial, archaeal and fungal communities thriving in each section of the gut. We found a microbial gradient along the gut from aerobic (foregut) to strictly anaerobic communities (hindgut). In addition, we have characterized interesting biological activities and metabolic pathways of gut microbial communities related to cellulose degradation, methane production and sulfate reduction. Taken together, our results reveal the highly diverse microbial community and the potential of P. marginata gut as a source of industrially relevant microbial diversity.

Abstract Image

边缘棘尾虫高度分化的肠道宿主序列微生物组:微生物生态学和潜在应用。
昆虫肠道微生物群在昆虫的发育过程中起着至关重要的作用,除其他因素外,还受昆虫专门的饮食习惯和肠道形态结构的影响。玫瑰糠虾(Pachnoda spp.具体来说,以前从未对边缘腹棘蛛这一物种进行过微生物生态学方面的详细研究。在这里,我们利用扩增子和元基因组测序技术,对边缘腹棘蛛高度分隔的肠道进行了精细研究,从而揭示了在肠道各部分繁荣发展的细菌、古细菌和真菌群落。我们发现,沿着肠道,从好氧(前肠)到纯厌氧群落(后肠)有一个微生物梯度。此外,我们还描述了肠道微生物群落与纤维素降解、甲烷产生和硫酸盐还原有关的有趣生物活动和代谢途径。总之,我们的研究结果揭示了边缘鱼肠道微生物群落的高度多样性,以及边缘鱼肠道作为工业相关微生物多样性来源的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信