The mechanosensitive ion channel Piezo1 contributes to podocyte cytoskeleton remodeling and development of proteinuria in lupus nephritis.

IF 14.8 1区 医学 Q1 UROLOGY & NEPHROLOGY
Rong Fu, Wenqian Wang, Yongbao Huo, Liu Li, Ruilin Chen, Zeying Lin, Yi Tao, Xuan Peng, Wenhui Huang, Chaohuan Guo
{"title":"The mechanosensitive ion channel Piezo1 contributes to podocyte cytoskeleton remodeling and development of proteinuria in lupus nephritis.","authors":"Rong Fu, Wenqian Wang, Yongbao Huo, Liu Li, Ruilin Chen, Zeying Lin, Yi Tao, Xuan Peng, Wenhui Huang, Chaohuan Guo","doi":"10.1016/j.kint.2024.06.025","DOIUrl":null,"url":null,"abstract":"<p><p>Piezo1 functions as a special transducer of mechanostress into electrochemical signals and is implicated in the pathogenesis of various diseases across different disciplines. However, whether Piezo1 contributes to the pathogenesis of lupus nephritis (LN) remains elusive. To study this, we applied an agonist and antagonist of Piezo1 to treat lupus-prone MRL/lpr mice. Additionally, a podocyte-specific Piezo1 knockout mouse model was also generated to substantiate the role of Piezo1 in podocyte injury induced by pristane, a murine model of LN. A marked upregulation of Piezo1 was found in podocytes in both human and murine LN. The Piezo1 antagonist, GsMTx4, significantly alleviated glomerulonephritis and tubulointerstitial damage, improved kidney function, decreased proteinuria, and mitigated podocyte foot process effacement in MRL/lpr mice. Moreover, podocyte-specific Piezo1 deletion showed protective effects on the progression of proteinuria and podocyte foot process effacement in the murine LN model. Mechanistically, Piezo1 expression was upregulated by inflammatory cytokines (IL-6, TNF-α and IFN-γ), soluble urokinase Plasminogen Activator Receptor and its own activation. Activation of Piezo1 elicited calcium influx, which subsequently enhanced Rac1 activity and increased active paxillin, thereby promoting cytoskeleton remodeling and decreasing podocyte motility. Thus, our work demonstrated that Piezo1 contributed to podocyte injury and proteinuria progression in LN. Hence, targeted therapy aimed at decreasing or inhibiting Piezo1 could represent a novel strategy to treat LN.</p>","PeriodicalId":17801,"journal":{"name":"Kidney international","volume":null,"pages":null},"PeriodicalIF":14.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.kint.2024.06.025","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Piezo1 functions as a special transducer of mechanostress into electrochemical signals and is implicated in the pathogenesis of various diseases across different disciplines. However, whether Piezo1 contributes to the pathogenesis of lupus nephritis (LN) remains elusive. To study this, we applied an agonist and antagonist of Piezo1 to treat lupus-prone MRL/lpr mice. Additionally, a podocyte-specific Piezo1 knockout mouse model was also generated to substantiate the role of Piezo1 in podocyte injury induced by pristane, a murine model of LN. A marked upregulation of Piezo1 was found in podocytes in both human and murine LN. The Piezo1 antagonist, GsMTx4, significantly alleviated glomerulonephritis and tubulointerstitial damage, improved kidney function, decreased proteinuria, and mitigated podocyte foot process effacement in MRL/lpr mice. Moreover, podocyte-specific Piezo1 deletion showed protective effects on the progression of proteinuria and podocyte foot process effacement in the murine LN model. Mechanistically, Piezo1 expression was upregulated by inflammatory cytokines (IL-6, TNF-α and IFN-γ), soluble urokinase Plasminogen Activator Receptor and its own activation. Activation of Piezo1 elicited calcium influx, which subsequently enhanced Rac1 activity and increased active paxillin, thereby promoting cytoskeleton remodeling and decreasing podocyte motility. Thus, our work demonstrated that Piezo1 contributed to podocyte injury and proteinuria progression in LN. Hence, targeted therapy aimed at decreasing or inhibiting Piezo1 could represent a novel strategy to treat LN.

机械敏感性离子通道Piezo1有助于狼疮性肾炎患者荚膜细胞细胞骨架重塑和蛋白尿的形成。
Piezo1 是一种将机械应力转化为电化学信号的特殊换能器,与不同学科中各种疾病的发病机制有关。然而,Piezo1 是否与狼疮性肾炎(LN)的发病机制有关仍未确定。为了研究这个问题,我们使用 Piezo1 的激动剂和拮抗剂来治疗易患狼疮的 MRL/lpr 小鼠。此外,我们还建立了一个荚膜特异性 Piezo1 基因敲除小鼠模型,以证实 Piezo1 在普利斯坦(一种 LN 小鼠模型)诱导的荚膜损伤中的作用。在人类和小鼠 LN 的荚膜细胞中都发现了 Piezo1 的明显上调。Piezo1 拮抗剂 GsMTx4 能显著缓解 MRL/lpr 小鼠的肾小球肾炎和肾小管间质损伤,改善肾功能,减少蛋白尿,并减轻荚膜脚进程脱落。此外,在小鼠 LN 模型中,荚膜特异性 Piezo1 基因缺失对蛋白尿的进展和荚膜脚突起的脱落具有保护作用。从机理上讲,炎性细胞因子(IL-6、TNF-α 和 IFN-γ)、可溶性尿激酶纤溶酶原激活剂受体及其自身激活可上调 Piezo1 的表达。激活 Piezo1 会导致钙离子流入,进而增强 Rac1 的活性并提高 paxillin 的活性,从而促进细胞骨架重塑并降低荚膜细胞的运动能力。因此,我们的研究表明,Piezo1 是导致 LN 中荚膜细胞损伤和蛋白尿进展的原因之一。因此,旨在减少或抑制 Piezo1 的靶向治疗可能是治疗 LN 的一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Kidney international
Kidney international 医学-泌尿学与肾脏学
CiteScore
23.30
自引率
3.10%
发文量
490
审稿时长
3-6 weeks
期刊介绍: Kidney International (KI), the official journal of the International Society of Nephrology, is led by Dr. Pierre Ronco (Paris, France) and stands as one of nephrology's most cited and esteemed publications worldwide. KI provides exceptional benefits for both readers and authors, featuring highly cited original articles, focused reviews, cutting-edge imaging techniques, and lively discussions on controversial topics. The journal is dedicated to kidney research, serving researchers, clinical investigators, and practicing nephrologists.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信