Pauline Beaumont, Samuel Amintas, Stéphanie Krisa, Arnaud Courtois, Tristan Richard, Itziar Eseberri, Maria P Portillo
{"title":"Glucuronide metabolites of trans-ε-viniferin decrease triglycerides accumulation in an in vitro model of hepatic steatosis.","authors":"Pauline Beaumont, Samuel Amintas, Stéphanie Krisa, Arnaud Courtois, Tristan Richard, Itziar Eseberri, Maria P Portillo","doi":"10.1007/s13105-024-01035-w","DOIUrl":null,"url":null,"abstract":"<p><p>Trans-ε-viniferin, a resveratrol dimer found mainly in grapevine wood, has shown protective capacities against hepatic steatosis in vivo. Nevertheless, this compound is very poorly bioavailable. Thus, the aim of the present study is to determine the potential anti-steatotic properties of 1 and 10 µM of trans-ε-viniferin and its four glucuronide metabolites in AML-12 cells treated with palmitic acid as an in vitro model of hepatic steatosis. The effect of the molecules in cell viability and triglyceride accumulation, and the underlying mechanisms of action by Real-Time PCR and Western Blot were analysed, as well as the quantification of trans-ε-viniferin and the identified bioactive metabolite inside cells and their incubation media. Interestingly, we were able to determine the triglyceride-lowering property of one of the glucuronides (trans-ε-viniferin-2-glucuronide), which acts on de novo lipogenesis, fatty acid uptake and triglyceride assembly. The glucuronides of trans-ε-viniferin would therefore be partly responsible for the in vivo observed anti-steatotic properties of the parent compound.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"685-696"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-024-01035-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Trans-ε-viniferin, a resveratrol dimer found mainly in grapevine wood, has shown protective capacities against hepatic steatosis in vivo. Nevertheless, this compound is very poorly bioavailable. Thus, the aim of the present study is to determine the potential anti-steatotic properties of 1 and 10 µM of trans-ε-viniferin and its four glucuronide metabolites in AML-12 cells treated with palmitic acid as an in vitro model of hepatic steatosis. The effect of the molecules in cell viability and triglyceride accumulation, and the underlying mechanisms of action by Real-Time PCR and Western Blot were analysed, as well as the quantification of trans-ε-viniferin and the identified bioactive metabolite inside cells and their incubation media. Interestingly, we were able to determine the triglyceride-lowering property of one of the glucuronides (trans-ε-viniferin-2-glucuronide), which acts on de novo lipogenesis, fatty acid uptake and triglyceride assembly. The glucuronides of trans-ε-viniferin would therefore be partly responsible for the in vivo observed anti-steatotic properties of the parent compound.
期刊介绍:
The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.