{"title":"Genome analysis through image processing with deep learning models","authors":"Yao-zhong Zhang, Seiya Imoto","doi":"10.1038/s10038-024-01275-0","DOIUrl":null,"url":null,"abstract":"Genomic sequences are traditionally represented as strings of characters: A (adenine), C (cytosine), G (guanine), and T (thymine). However, an alternative approach involves depicting sequence-related information through image representations, such as Chaos Game Representation (CGR) and read pileup images. With rapid advancements in deep learning (DL) methods within computer vision and natural language processing, there is growing interest in applying image-based DL methods to genomic sequence analysis. These methods involve encoding genomic information as images or integrating spatial information from images into the analytical process. In this review, we summarize three typical applications that use image processing with DL models for genome analysis. We examine the utilization and advantages of these image-based approaches.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 10","pages":"519-525"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s10038-024-01275-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s10038-024-01275-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Genomic sequences are traditionally represented as strings of characters: A (adenine), C (cytosine), G (guanine), and T (thymine). However, an alternative approach involves depicting sequence-related information through image representations, such as Chaos Game Representation (CGR) and read pileup images. With rapid advancements in deep learning (DL) methods within computer vision and natural language processing, there is growing interest in applying image-based DL methods to genomic sequence analysis. These methods involve encoding genomic information as images or integrating spatial information from images into the analytical process. In this review, we summarize three typical applications that use image processing with DL models for genome analysis. We examine the utilization and advantages of these image-based approaches.
期刊介绍:
The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy.
Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.