{"title":"Protein-sparing effects of lipids in the diet of golden pompano (Trachinotus ovatus): evaluation of growth, feed utilization, and lipid metabolism.","authors":"Xinyi Li, Liuling Gao, Fang Chen, Junfeng Guan, Shuqi Wang, Dizhi Xie, Qing Pan","doi":"10.1007/s10695-024-01392-9","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the influences of dietary protein and lipid levels on the growth, feed utilization, morphometric parameters, body composition, serum biochemical parameters, and lipid metabolism of golden pompano (Trachinotus ovatus), nine test diets containing three protein levels (35%, 40%, and 45%) and three lipid levels (8%, 13%, and 18%) were designed in the present study. Each diet (named D1-D9) was randomly assigned to feed triplicate groups of golden pompano juvenile (initial weight ~ 70 g) for 50 days. The results showed that the dietary lipid levels positively correlated with weight gain, specific growth rate, and protein efficiency ratio (PER), suggesting that the high lipid diets (18%) can be efficiently utilized in this fish species. The dietary protein levels have no significant influences on the growth and feed utilization except for the PER. Increasing dietary protein levels resulted in a decrease in hepatosomatic index (HSI), viscerosomatic index (VSI), and intestinal somatic index (ISI), while the dietary lipid level did not have a significant impact on morphological indices except for ISI. The dietary protein and lipid levels had no significant influences on the contents of crude lipid, crude ash, and moisture of whole body, while the crude protein contents was significantly affected by the dietary protein levels. Serum biochemical indexes, including cholesterol (CHO), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL), as well as HDL/LDL ratio were significantly affected by the dietary lipid levels, but not by the dietary protein levels. The expression levels of genes and their associated proteins involved in hepatic lipogenesis (Srebp-1c and Fas) and fatty acids β-oxidation (Pparα and Cpt-1) were up-regulated with increasing dietary lipid levels, while the former was up-regulated, and the latter was down-regulated with increasing dietary protein levels. Considering the present results in terms of growth performance, feed utilization, morphometric parameters, and lipid metabolism, the recommended dietary protein and lipid levels for golden pompano are 40% and 18%, respectively. The findings suggested that this species exhibits a significant protein-sparing effect on lipid utilization.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"2275-2286"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10695-024-01392-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the influences of dietary protein and lipid levels on the growth, feed utilization, morphometric parameters, body composition, serum biochemical parameters, and lipid metabolism of golden pompano (Trachinotus ovatus), nine test diets containing three protein levels (35%, 40%, and 45%) and three lipid levels (8%, 13%, and 18%) were designed in the present study. Each diet (named D1-D9) was randomly assigned to feed triplicate groups of golden pompano juvenile (initial weight ~ 70 g) for 50 days. The results showed that the dietary lipid levels positively correlated with weight gain, specific growth rate, and protein efficiency ratio (PER), suggesting that the high lipid diets (18%) can be efficiently utilized in this fish species. The dietary protein levels have no significant influences on the growth and feed utilization except for the PER. Increasing dietary protein levels resulted in a decrease in hepatosomatic index (HSI), viscerosomatic index (VSI), and intestinal somatic index (ISI), while the dietary lipid level did not have a significant impact on morphological indices except for ISI. The dietary protein and lipid levels had no significant influences on the contents of crude lipid, crude ash, and moisture of whole body, while the crude protein contents was significantly affected by the dietary protein levels. Serum biochemical indexes, including cholesterol (CHO), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL), as well as HDL/LDL ratio were significantly affected by the dietary lipid levels, but not by the dietary protein levels. The expression levels of genes and their associated proteins involved in hepatic lipogenesis (Srebp-1c and Fas) and fatty acids β-oxidation (Pparα and Cpt-1) were up-regulated with increasing dietary lipid levels, while the former was up-regulated, and the latter was down-regulated with increasing dietary protein levels. Considering the present results in terms of growth performance, feed utilization, morphometric parameters, and lipid metabolism, the recommended dietary protein and lipid levels for golden pompano are 40% and 18%, respectively. The findings suggested that this species exhibits a significant protein-sparing effect on lipid utilization.
期刊介绍:
Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.