Effect of placement strategies and connector designs in CAD/CAM technology on fracture resistance of multilayered monolithic zirconia fixed dental prostheses: An in vitro study.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-09-28 Epub Date: 2024-07-31 DOI:10.4012/dmj.2024-018
Fahad Bakitian
{"title":"Effect of placement strategies and connector designs in CAD/CAM technology on fracture resistance of multilayered monolithic zirconia fixed dental prostheses: An in vitro study.","authors":"Fahad Bakitian","doi":"10.4012/dmj.2024-018","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated fracture resistance of monolithic fixed dental prostheses (FDPs) fabricated using different placement strategies of various connector designs in multilayered zirconia disc. Monolithic FDPs were placed in translucent and dentin layers of multilayered zirconia disc and fabricated with V-shaped and U-shaped connector designs gained by sharp and blunt millings. The FDPs were cemented on abutment models made of polymer material, underwent thermal cycles, and loaded to fracture using the universal testing machine. Fracture loads and modes were analyzed using two-way ANOVA, Tukey's post hoc test, and Fisher exact test (p≤0.05). The chosen placement strategy and connector designs gained by different milling procedures in computer-aided design/computer-aided manufacturing technology affect fracture resistance of monolithic FDPs made of multilayered zirconia materials. Placing the connector in translucent layer rather than dentin layer of multilayered zirconia disc and using sharp milling significantly reduces fracture resistance of monolithic multilayered zirconia FDPs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2024-018","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated fracture resistance of monolithic fixed dental prostheses (FDPs) fabricated using different placement strategies of various connector designs in multilayered zirconia disc. Monolithic FDPs were placed in translucent and dentin layers of multilayered zirconia disc and fabricated with V-shaped and U-shaped connector designs gained by sharp and blunt millings. The FDPs were cemented on abutment models made of polymer material, underwent thermal cycles, and loaded to fracture using the universal testing machine. Fracture loads and modes were analyzed using two-way ANOVA, Tukey's post hoc test, and Fisher exact test (p≤0.05). The chosen placement strategy and connector designs gained by different milling procedures in computer-aided design/computer-aided manufacturing technology affect fracture resistance of monolithic FDPs made of multilayered zirconia materials. Placing the connector in translucent layer rather than dentin layer of multilayered zirconia disc and using sharp milling significantly reduces fracture resistance of monolithic multilayered zirconia FDPs.

CAD/CAM技术中的植入策略和连接器设计对多层整体氧化锆固定义齿抗断裂性的影响:体外研究。
本研究评估了在多层氧化锆牙盘中使用不同连接体设计的不同放置策略制作的整体固定义齿(FDP)的抗断裂性。在多层氧化锆盘的半透明层和牙本质层中放置了单体固定义齿,并使用尖磨和钝磨获得的 V 形和 U 形连接体设计制作了单体固定义齿。将 FDP 粘接在聚合物材料制成的基台模型上,进行热循环,并使用万能试验机加载至断裂。采用双向方差分析、Tukey 后检验和费雪精确检验(P≤0.05)对断裂载荷和断裂模式进行分析。通过计算机辅助设计/计算机辅助制造技术的不同铣削程序获得的所选植入策略和连接体设计会影响多层氧化锆材料制成的单片 FDP 的抗断裂性。在多层氧化锆牙盘的半透明层而不是牙本质层放置连接体,并使用锐铣,可显著降低整体多层氧化锆 FDP 的抗断裂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信