{"title":"Dimerization is required for the glycosylation of S1-S2 linker of sea urchin voltage-gated proton channel Hv1.","authors":"Yoshifumi Okochi, Yuka Jinno, Yasushi Okamura","doi":"10.1016/j.bpj.2024.07.034","DOIUrl":null,"url":null,"abstract":"<p><p>Multimerization of ion channels is essential for establishing the ion-selective pathway and tuning the gating regulated by membrane potential, second messengers, and temperature. Voltage-gated proton channel, Hv1, consists of voltage-sensor domain and coiled-coil domain. Hv1 forms dimer, whereas voltage-dependent channel activity is self-contained in monomer unlike many ion channels, which assemble to form ion-conductive pathways among multiple subunits. Dimerization of Hv1 is necessary for cooperative gating, but other roles of dimerization in physiological aspects are still largely unclear. In this study, we show that dimerization of Hv1 takes place in ER. Sea urchin Hv1 (Strongylocentrotus purpuratus Hv1: SpHv1) was glycosylated in the consensus sequence for N-linked glycosylation within the S1-S2 extracellular loop. However, glycosylation was not observed in the monomeric SpHv1 that lacks the coiled-coil domain. A version of mHv1 in which the S1-S2 loop was replaced by that of SpHv1 showed glycosylation and its monomeric form was not glycosylated. Tandem dimer of monomeric SpHv1 underwent glycosylation, suggesting that dimerization of Hv1 is required for glycosylation. Moreover, when monomeric Hv1 has a dilysine motif in the C-terminal end, which is known to act as a retrieval signal from Golgi to ER, prolonging the time of residency in ER, it was glycosylated. Overall, our results suggest that monomeric SpHv1 does not stay long in ER, thereby escaping glycosylation, while the dimerization causes the proteins to stay longer in ER. Thus, the findings highlight the novel significance of dimerization of Hv1: regulation of biogenesis and maturation of the proteins in intracellular compartments.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"4221-4232"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.07.034","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Multimerization of ion channels is essential for establishing the ion-selective pathway and tuning the gating regulated by membrane potential, second messengers, and temperature. Voltage-gated proton channel, Hv1, consists of voltage-sensor domain and coiled-coil domain. Hv1 forms dimer, whereas voltage-dependent channel activity is self-contained in monomer unlike many ion channels, which assemble to form ion-conductive pathways among multiple subunits. Dimerization of Hv1 is necessary for cooperative gating, but other roles of dimerization in physiological aspects are still largely unclear. In this study, we show that dimerization of Hv1 takes place in ER. Sea urchin Hv1 (Strongylocentrotus purpuratus Hv1: SpHv1) was glycosylated in the consensus sequence for N-linked glycosylation within the S1-S2 extracellular loop. However, glycosylation was not observed in the monomeric SpHv1 that lacks the coiled-coil domain. A version of mHv1 in which the S1-S2 loop was replaced by that of SpHv1 showed glycosylation and its monomeric form was not glycosylated. Tandem dimer of monomeric SpHv1 underwent glycosylation, suggesting that dimerization of Hv1 is required for glycosylation. Moreover, when monomeric Hv1 has a dilysine motif in the C-terminal end, which is known to act as a retrieval signal from Golgi to ER, prolonging the time of residency in ER, it was glycosylated. Overall, our results suggest that monomeric SpHv1 does not stay long in ER, thereby escaping glycosylation, while the dimerization causes the proteins to stay longer in ER. Thus, the findings highlight the novel significance of dimerization of Hv1: regulation of biogenesis and maturation of the proteins in intracellular compartments.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.