Extracting and characterizing novel cellulose fibers from Chamaerops humilis rachis for textiles' sustainable and cleaner production as reinforcement for potential applications.
Soumia Atoui, Ahmed Belaadi, Boon Xian Chai, Mahmood M S Abdullah, Amar Al-Khawlani, Djamel Ghernaout
{"title":"Extracting and characterizing novel cellulose fibers from Chamaerops humilis rachis for textiles' sustainable and cleaner production as reinforcement for potential applications.","authors":"Soumia Atoui, Ahmed Belaadi, Boon Xian Chai, Mahmood M S Abdullah, Amar Al-Khawlani, Djamel Ghernaout","doi":"10.1016/j.ijbiomac.2024.134029","DOIUrl":null,"url":null,"abstract":"<p><p>New cellulose (CL) fibers are derived from Chamaerops humilis (Ch) rachis. They play an essential role in various industries to produce environmentally friendly products as an alternative to enhancing and strengthening lightweight composites, such as dashboards automotive. Distinctive properties of Ch fibers (ChFs) were determined by extracting fibers from dwarf palm plant branches using anaerobic analysis. This search comprehensively studies morphological, physical, mechanical, and thermal characteristics and water absorption testing. The fiber diameter was 241.23 ± 34.77 μm, while the obtained linear density and density were 13.71 ± 0.57 T<sub>ex</sub> and 0.801 ± 0.05 g/cm<sup>3</sup>, respectively. The moisture content was 8.5 %, and the moisture regain was 9.29 %. Scanning electron microscopy images showed the fibers and smooth and rough surfaces. The thermogravimetric analysis demonstrated the maximum degradation of 352 °C, thermal stability of 243 °C, and the kinetic activation energy reached (79.78 kJ/mol). X-ray diffraction proves the availability of CL, with a crystallinity index = 68.38 % and crystal size = 2.92 nm. Fourier transform infrared succeeded in detecting functional groups and chemical compounds of fibers. The fibers exhibited a tensile stress of 110.85 ± 77.08 MPa, an elongation at a break rate of 2.29 ± 1.27 %, and Young's modulus of 6.05 ± 3.9 GPa. The maximum likelihood method (2P-Weibull distribution) was employed to examine the distribution of mechanical properties of fibers. According to the results above, new ChFs are an excellent reinforcement for elaborating fiber-reinforced biocomposites.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"134029"},"PeriodicalIF":8.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.134029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
New cellulose (CL) fibers are derived from Chamaerops humilis (Ch) rachis. They play an essential role in various industries to produce environmentally friendly products as an alternative to enhancing and strengthening lightweight composites, such as dashboards automotive. Distinctive properties of Ch fibers (ChFs) were determined by extracting fibers from dwarf palm plant branches using anaerobic analysis. This search comprehensively studies morphological, physical, mechanical, and thermal characteristics and water absorption testing. The fiber diameter was 241.23 ± 34.77 μm, while the obtained linear density and density were 13.71 ± 0.57 Tex and 0.801 ± 0.05 g/cm3, respectively. The moisture content was 8.5 %, and the moisture regain was 9.29 %. Scanning electron microscopy images showed the fibers and smooth and rough surfaces. The thermogravimetric analysis demonstrated the maximum degradation of 352 °C, thermal stability of 243 °C, and the kinetic activation energy reached (79.78 kJ/mol). X-ray diffraction proves the availability of CL, with a crystallinity index = 68.38 % and crystal size = 2.92 nm. Fourier transform infrared succeeded in detecting functional groups and chemical compounds of fibers. The fibers exhibited a tensile stress of 110.85 ± 77.08 MPa, an elongation at a break rate of 2.29 ± 1.27 %, and Young's modulus of 6.05 ± 3.9 GPa. The maximum likelihood method (2P-Weibull distribution) was employed to examine the distribution of mechanical properties of fibers. According to the results above, new ChFs are an excellent reinforcement for elaborating fiber-reinforced biocomposites.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.