Motoya Sano, Kota Kamei, Tomoyuki Yatsuhashi, Kenji Sakota
{"title":"Localization and Orientation of Dye Molecules at the Surface of a Levitated Microdroplet in Air Revealed by Whispering Gallery Mode Resonances.","authors":"Motoya Sano, Kota Kamei, Tomoyuki Yatsuhashi, Kenji Sakota","doi":"10.1021/acs.jpclett.4c01819","DOIUrl":null,"url":null,"abstract":"<p><p>Microdroplets offer unique environments that accelerate chemical reactions; however, the mechanisms behind these processes remain debated. The localization and orientation of solute molecules near the droplet surface have been proposed as factors for this acceleration. Since significant reaction acceleration has been observed for electrospray- and sonic-spray-generated aerosol droplets, the analysis of microdroplets in air has become essential. Here, we utilized whispering gallery mode (WGM) resonances to investigate the localization and orientation of dissolved rhodamine B (RhB) in a levitated microdroplet (∼3 μm in diameter) in air. Fluorescence enhancement upon resonance with the WGMs revealed the localization and orientation of RhB near the droplet surface. Numerical modeling using Mie theory quantified the RhB orientation at 68° to the surface normal, with a small fraction randomly oriented inside the droplet. Additionally, low RhB concentrations increased surface localization. These results support the significance of surface reactions in the acceleration of microdroplet reactions.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"8133-8141"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c01819","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microdroplets offer unique environments that accelerate chemical reactions; however, the mechanisms behind these processes remain debated. The localization and orientation of solute molecules near the droplet surface have been proposed as factors for this acceleration. Since significant reaction acceleration has been observed for electrospray- and sonic-spray-generated aerosol droplets, the analysis of microdroplets in air has become essential. Here, we utilized whispering gallery mode (WGM) resonances to investigate the localization and orientation of dissolved rhodamine B (RhB) in a levitated microdroplet (∼3 μm in diameter) in air. Fluorescence enhancement upon resonance with the WGMs revealed the localization and orientation of RhB near the droplet surface. Numerical modeling using Mie theory quantified the RhB orientation at 68° to the surface normal, with a small fraction randomly oriented inside the droplet. Additionally, low RhB concentrations increased surface localization. These results support the significance of surface reactions in the acceleration of microdroplet reactions.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.