Katharina Kronenberg, Emily Hoffmann, Lena Hiddeßen, Bastian Maus, Mirjam Gerwing, Cornelius Faber, Michael Sperling, Moritz Wildgruber, Uwe Karst
{"title":"P-based referencing for correcting tissue artifacts in laser ablation-inductively coupled plasma-mass spectrometry imaging of cancer samples.","authors":"Katharina Kronenberg, Emily Hoffmann, Lena Hiddeßen, Bastian Maus, Mirjam Gerwing, Cornelius Faber, Michael Sperling, Moritz Wildgruber, Uwe Karst","doi":"10.1093/mtomcs/mfae034","DOIUrl":null,"url":null,"abstract":"<p><p>A referencing strategy based on the element P is presented to compensate for cryosectioning tissue artifacts in laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data. The study examines how the gadolinium-based contrast agent Gadofosveset is distributed in murine cancer tissue, and illustrates how referenced images can compensate for tissue artifacts like folds, overlaps, and density variations. Compared to non-referenced images that provide information on the absolute distribution of the analyte, referenced images allow for the representation of the analyte distribution relative to the amount of material introduced into the instrument, which in this case is correlated to the P signal. Tissue artifacts were corrected in referenced images for both Gadofosveset and endogenous elements, such as Fe and Zn. Additionally, the referencing approach provides valuable information on the Gd uptake relative to the tissue density in necrotic compared to vital tumor areas, which is not obtained from in vivo magnetic resonance imaging (MRI) data. However, validation of in vivo MRI and ex vivo LA-ICP-MS methods was possible by establishing a mean ratio of necrotic to vital tumor areas in the T1-weighted image post Gadofosveset injection and the non-referenced LA-ICP-MS image of Gd. In summary, P-based correction of LA-ICP-MS imaging data allows for a more accurate spatial representation of certain elements, including endogenous and exogenous elements such as injected contrast agents.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfae034","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A referencing strategy based on the element P is presented to compensate for cryosectioning tissue artifacts in laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data. The study examines how the gadolinium-based contrast agent Gadofosveset is distributed in murine cancer tissue, and illustrates how referenced images can compensate for tissue artifacts like folds, overlaps, and density variations. Compared to non-referenced images that provide information on the absolute distribution of the analyte, referenced images allow for the representation of the analyte distribution relative to the amount of material introduced into the instrument, which in this case is correlated to the P signal. Tissue artifacts were corrected in referenced images for both Gadofosveset and endogenous elements, such as Fe and Zn. Additionally, the referencing approach provides valuable information on the Gd uptake relative to the tissue density in necrotic compared to vital tumor areas, which is not obtained from in vivo magnetic resonance imaging (MRI) data. However, validation of in vivo MRI and ex vivo LA-ICP-MS methods was possible by establishing a mean ratio of necrotic to vital tumor areas in the T1-weighted image post Gadofosveset injection and the non-referenced LA-ICP-MS image of Gd. In summary, P-based correction of LA-ICP-MS imaging data allows for a more accurate spatial representation of certain elements, including endogenous and exogenous elements such as injected contrast agents.