Małgorzata Palusińska, Anna Barabasz, Danuta Maria Antosiewicz
{"title":"NtZIP5A/B is involved in the regulation of Zn/Cu/Fe/Mn/Cd homeostasis in tobacco.","authors":"Małgorzata Palusińska, Anna Barabasz, Danuta Maria Antosiewicz","doi":"10.1093/mtomcs/mfae035","DOIUrl":null,"url":null,"abstract":"<p><p>Plants grow in soils with varying concentrations of microelements, often in the presence of toxic metals e.g. Cd. To cope, they developed molecular mechanisms to regulate metal cross-homeostasis. Understanding underlying complex relationships is key to improving crop productivity. Recent research suggests that the Zn and Cd uptake protein NtZIP5A/B [Zinc-regulated, Iron-regulated transporter-like Proteins (ZIPs)] from tobacco (Nicotiana tabacum L. v. Xanthi) is involved in the regulation of a cross-talk between the two metals. Here, we support this conclusion by showing that RNAi-mediated silencing of NtZIP5A/B resulted in a reduction of Zn accumulation and that this effect was significantly enhanced by the presence of Cd. Our data also point to involvement of NtZIP5B in regulating a cross-talk between Cu, Fe, and Mn. Using yeast growth assays, Cu (but not Fe or Mn) was identified as a substrate for NtZIP5B. Furthermore, GUS-based analysis showed that the tissue-specific activity of the NtZIP5B promoter was different in each of the Zn-/Cu-/Fe-/Mn deficiencies applied with/without Cd. The results indicate that NtZIP5B is involved in maintaining multi-metal homeostasis under conditions of Zn, Cu, Fe, and Mn deficiency, and also in the presence of Cd. It was concluded that the protein regulates the delivery of Zn and Cu specifically to targeted different root cells depending on the Zn/Cu/Fe/Mn status. Importantly, in the presence of Cd, the activity of the NtZIP5B promoter is lost in meristematic cells and increased in mature root cortex cells, which can be considered a manifestation of a defense mechanism against its toxic effects.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfae035","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants grow in soils with varying concentrations of microelements, often in the presence of toxic metals e.g. Cd. To cope, they developed molecular mechanisms to regulate metal cross-homeostasis. Understanding underlying complex relationships is key to improving crop productivity. Recent research suggests that the Zn and Cd uptake protein NtZIP5A/B [Zinc-regulated, Iron-regulated transporter-like Proteins (ZIPs)] from tobacco (Nicotiana tabacum L. v. Xanthi) is involved in the regulation of a cross-talk between the two metals. Here, we support this conclusion by showing that RNAi-mediated silencing of NtZIP5A/B resulted in a reduction of Zn accumulation and that this effect was significantly enhanced by the presence of Cd. Our data also point to involvement of NtZIP5B in regulating a cross-talk between Cu, Fe, and Mn. Using yeast growth assays, Cu (but not Fe or Mn) was identified as a substrate for NtZIP5B. Furthermore, GUS-based analysis showed that the tissue-specific activity of the NtZIP5B promoter was different in each of the Zn-/Cu-/Fe-/Mn deficiencies applied with/without Cd. The results indicate that NtZIP5B is involved in maintaining multi-metal homeostasis under conditions of Zn, Cu, Fe, and Mn deficiency, and also in the presence of Cd. It was concluded that the protein regulates the delivery of Zn and Cu specifically to targeted different root cells depending on the Zn/Cu/Fe/Mn status. Importantly, in the presence of Cd, the activity of the NtZIP5B promoter is lost in meristematic cells and increased in mature root cortex cells, which can be considered a manifestation of a defense mechanism against its toxic effects.