Vertically Resolved Analysis of the Madden-Julian Oscillation Highlights the Role of Convective Transport of Moist Static Energy

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Da Yang, Lin Yao, Walter Hannah
{"title":"Vertically Resolved Analysis of the Madden-Julian Oscillation Highlights the Role of Convective Transport of Moist Static Energy","authors":"Da Yang,&nbsp;Lin Yao,&nbsp;Walter Hannah","doi":"10.1029/2024GL109910","DOIUrl":null,"url":null,"abstract":"<p>We simulate the Madden-Julian oscillation (MJO) over an aquaplanet with uniform surface temperature using the multiscale modeling framework (MMF) configuration of the Energy Exascale Earth System Model (E3SM-MMF). The model produces MJO-like features that have a similar spatial structure and propagation behavior to the observed MJO. To explore the processes involved in the propagation and maintenance of these MJO-like features, we perform a vertically resolved moist static energy (MSE) analysis for the MJO (Yao et al., 2022, https://doi.org/10.1175/jas-d-20-0254.1). Unlike the column-integrated MSE analysis, our method emphasizes the local production of MSE variance and quantifies how individual physical processes amplify and propagate the MJO's characteristic vertical structure. We find that radiation, convection, and boundary layer (BL) processes all contribute to maintaining the MJO, balanced by the large-scale MSE transport. Furthermore, large-scale dynamics, convection, and BL processes all contribute to the propagation of the MJO, while radiation slows the propagation. Additionally, we perform mechanism-denial experiments to examine the role of radiation and associated feedbacks in simulating the MJO. We find that the MJO can still self-emerge and maintain its characteristic structures without radiative feedbacks. This study highlights the role of convective MSE transport in the MJO dynamics, which was overlooked in the column-integrated MSE analysis.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL109910","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL109910","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We simulate the Madden-Julian oscillation (MJO) over an aquaplanet with uniform surface temperature using the multiscale modeling framework (MMF) configuration of the Energy Exascale Earth System Model (E3SM-MMF). The model produces MJO-like features that have a similar spatial structure and propagation behavior to the observed MJO. To explore the processes involved in the propagation and maintenance of these MJO-like features, we perform a vertically resolved moist static energy (MSE) analysis for the MJO (Yao et al., 2022, https://doi.org/10.1175/jas-d-20-0254.1). Unlike the column-integrated MSE analysis, our method emphasizes the local production of MSE variance and quantifies how individual physical processes amplify and propagate the MJO's characteristic vertical structure. We find that radiation, convection, and boundary layer (BL) processes all contribute to maintaining the MJO, balanced by the large-scale MSE transport. Furthermore, large-scale dynamics, convection, and BL processes all contribute to the propagation of the MJO, while radiation slows the propagation. Additionally, we perform mechanism-denial experiments to examine the role of radiation and associated feedbacks in simulating the MJO. We find that the MJO can still self-emerge and maintain its characteristic structures without radiative feedbacks. This study highlights the role of convective MSE transport in the MJO dynamics, which was overlooked in the column-integrated MSE analysis.

Abstract Image

对马登-朱利安涛动的垂直分辨分析凸显了对流输送湿静态能量的作用
我们利用能源超大规模地球系统模式(E3SM-MMF)的多尺度建模框架(MMF)配置,模拟了表面温度均匀的水行星上的麦登-朱利安涛动(MJO)。该模型产生了类似 MJO 的特征,其空间结构和传播行为与观测到的 MJO 相似。为了探索这些类似 MJO 特征的传播和维持过程,我们对 MJO 进行了垂直分辨湿静态能量(MSE)分析(Yao 等人,2022 年,https://doi.org/10.1175/jas-d-20-0254.1)。与柱状积分 MSE 分析不同,我们的方法强调 MSE 方差的局部产生,并量化单个物理过程如何放大和传播 MJO 的垂直结构特征。我们发现,辐射、对流和边界层(BL)过程都有助于维持 MJO,并通过大尺度 MSE 传输达到平衡。此外,大尺度动力学、对流和边界层过程都有助于 MJO 的传播,而辐射则减缓了传播。此外,我们还进行了机制否认实验,以检验辐射和相关反馈在模拟 MJO 中的作用。我们发现,在没有辐射反馈的情况下,MJO 仍能自我出现并保持其特征结构。这项研究强调了对流MSE传输在MJO动力学中的作用,而这一作用在柱积分MSE分析中被忽视了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信