José F. Rubio-Valle, Concepción Valencia, M. Carmen Sánchez-Carrillo, José E. Martín-Alfonso, José M. Franco
{"title":"Valorization of Kraft Lignins from Different Poplar Genotypes as Vegetable Oil Structuring Agents via Electrospinning for Biolubricant Applications","authors":"José F. Rubio-Valle, Concepción Valencia, M. Carmen Sánchez-Carrillo, José E. Martín-Alfonso, José M. Franco","doi":"10.1021/acssuschemeng.4c05013","DOIUrl":null,"url":null,"abstract":"This work explores the use of Kraft lignins sourced from different poplar genotypes (<i>Populus alba</i> L. “PO-10-10-20” and <i>Populus</i> × <i>canadensis</i> “Ballotino”) isolated by selective acid precipitation (at pHs 5 and 2.5) to produce electrospun nanostructures that can be further employed for structuring vegetable oils. This approach offers a new avenue for converting these waste materials into high-value-added ingredients of eco-friendly structured lubricants. Electrospinning of poplar Kraft lignin (PKL)/cellulose acetate (CA) solutions yielded homogeneous beaded nanofiber mats that were able to generate stable dispersions when they were blended with different vegetable oils (castor, soybean, and high-oleic sunflower oils). Electrospun PKL/CA nanofiber mats with larger average fiber diameters were achieved using the lignins isolated at pH 5. Dispersions of PKL/CA nanofibers in vegetable oils presented gel-like viscoelastic characteristics and shear-thinning flow behavior, which slightly differ depending on the nanofiber morphological properties and can be tuned by selecting the poplar lignin genotype and precipitation pH. The rheological properties and tribological performance of PKL/CA nanofibers suitably dispersed in vegetable oils were found to be comparable to those obtained for conventional lubricating greases. Additionally, lignin nanofibers confer suitable oxidative stability to the ultimate formulations to different extents depending on the vegetable oil used.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"291 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c05013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work explores the use of Kraft lignins sourced from different poplar genotypes (Populus alba L. “PO-10-10-20” and Populus × canadensis “Ballotino”) isolated by selective acid precipitation (at pHs 5 and 2.5) to produce electrospun nanostructures that can be further employed for structuring vegetable oils. This approach offers a new avenue for converting these waste materials into high-value-added ingredients of eco-friendly structured lubricants. Electrospinning of poplar Kraft lignin (PKL)/cellulose acetate (CA) solutions yielded homogeneous beaded nanofiber mats that were able to generate stable dispersions when they were blended with different vegetable oils (castor, soybean, and high-oleic sunflower oils). Electrospun PKL/CA nanofiber mats with larger average fiber diameters were achieved using the lignins isolated at pH 5. Dispersions of PKL/CA nanofibers in vegetable oils presented gel-like viscoelastic characteristics and shear-thinning flow behavior, which slightly differ depending on the nanofiber morphological properties and can be tuned by selecting the poplar lignin genotype and precipitation pH. The rheological properties and tribological performance of PKL/CA nanofibers suitably dispersed in vegetable oils were found to be comparable to those obtained for conventional lubricating greases. Additionally, lignin nanofibers confer suitable oxidative stability to the ultimate formulations to different extents depending on the vegetable oil used.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.