Molecular Level Heterojunction with Sulfur Vacancy of Stable Polyhedral Star Configuration for Boosting Hydroxide Ion Storage

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
{"title":"Molecular Level Heterojunction with Sulfur Vacancy of Stable Polyhedral Star Configuration for Boosting Hydroxide Ion Storage","authors":"","doi":"10.1016/j.ensm.2024.103681","DOIUrl":null,"url":null,"abstract":"<p>The sluggish diffusion of electrons/OH<sup>−</sup> and poor structural stability restrict the OH<sup>−</sup> reaction kinetic of metal sulfides for supercapacitors. Herein, a molecular level NiS/Co<sub>9</sub>S<sub>8</sub> heterojunction with sulfur vacancy (S<sub>V</sub>) and nitrogen-doped carbon (NC) polyhedral star configuration composites (PS-NiS/Co<sub>9</sub>S<sub>8</sub>@NC) was derived from co-precipitated metal-organic framework (MOF) via in situ ion competitive vulcanization and carbonization strategies. Experiment and theoretical calculations show that the polyhedral star nanostructure with heterojunction exposes more active sites, while the triangular structure covered with NC layer in PS-NiS/Co<sub>9</sub>S<sub>8</sub>@NC composite plays a favorable supporting function for durable OH<sup>−</sup> storage. The NiS/Co<sub>9</sub>S<sub>8</sub> heterojunction, S<sub>V</sub>, and NC coatings synergically optimize the electronic environment and enhance the conductivity. More importantly, the charge redistribution that occurs at NiS/Co<sub>9</sub>S<sub>8</sub> can induce a built-in electric field, significantly reducing the OH<sup>−</sup> diffusion energy barrier and boosting the migration kinetics of electrons/OH<sup>−</sup>. The prepared PS-NiS/Co<sub>9</sub>S<sub>8</sub>@NC exhibits high reversible capacitance (1902 F g<sup>−1</sup> at 1 A g<sup>−1</sup>), excellent rate capacitance (1212 F g<sup>−1</sup> at 30 A g<sup>−1</sup>), and reliable cycle stability (80.1% retention after 7000 cycles). The assembled hybrid device displays an outstanding energy/power output (54.3 Wh kg<sup>−1</sup> and 12706.9 W kg<sup>−1</sup>). Our work provides a promising way to reasonable design between the structure and function for stable OH<sup>−</sup> storage.</p>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":null,"pages":null},"PeriodicalIF":18.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103681","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The sluggish diffusion of electrons/OH and poor structural stability restrict the OH reaction kinetic of metal sulfides for supercapacitors. Herein, a molecular level NiS/Co9S8 heterojunction with sulfur vacancy (SV) and nitrogen-doped carbon (NC) polyhedral star configuration composites (PS-NiS/Co9S8@NC) was derived from co-precipitated metal-organic framework (MOF) via in situ ion competitive vulcanization and carbonization strategies. Experiment and theoretical calculations show that the polyhedral star nanostructure with heterojunction exposes more active sites, while the triangular structure covered with NC layer in PS-NiS/Co9S8@NC composite plays a favorable supporting function for durable OH storage. The NiS/Co9S8 heterojunction, SV, and NC coatings synergically optimize the electronic environment and enhance the conductivity. More importantly, the charge redistribution that occurs at NiS/Co9S8 can induce a built-in electric field, significantly reducing the OH diffusion energy barrier and boosting the migration kinetics of electrons/OH. The prepared PS-NiS/Co9S8@NC exhibits high reversible capacitance (1902 F g−1 at 1 A g−1), excellent rate capacitance (1212 F g−1 at 30 A g−1), and reliable cycle stability (80.1% retention after 7000 cycles). The assembled hybrid device displays an outstanding energy/power output (54.3 Wh kg−1 and 12706.9 W kg−1). Our work provides a promising way to reasonable design between the structure and function for stable OH storage.

Abstract Image

具有稳定多面体星形构型的硫空位分子级异质结促进氢氧根离子存储
电子/OH-扩散缓慢和结构稳定性差限制了用于超级电容器的金属硫化物的 OH-反应动力学。在此,通过原位离子竞争硫化和碳化策略,从共沉淀金属有机框架(MOF)中得到了一种分子水平的NiS/Co9S8异质结与硫空位(SV)和掺氮碳(NC)多面体星形构型复合材料(PS-NiS/Co9S8@NC)。实验和理论计算表明,具有异质结的多面体星形纳米结构暴露了更多的活性位点,而在 PS-NiS/Co9S8@NC 复合材料中,NC 层覆盖的三角形结构对持久的 OH- 储存起到了有利的支撑作用。NiS/Co9S8 异质结、SV 和 NC 涂层协同优化了电子环境并提高了导电性。更重要的是,NiS/Co9S8 上发生的电荷再分布可以诱导内置电场,从而显著降低 OH- 扩散能垒,促进电子/OH- 迁移动力学。制备的 PS-NiS/Co9S8@NC 具有很高的可逆电容(1 A g-1 时为 1902 F g-1)、优异的速率电容(30 A g-1 时为 1212 F g-1)和可靠的循环稳定性(7000 次循环后保持率为 80.1%)。组装后的混合器件具有出色的能量/功率输出(54.3 Wh kg-1 和 12706.9 W kg-1)。我们的工作为在结构和功能之间进行合理设计以实现稳定的 OH- 储存提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信