Balancing G protein selectivity and efficacy in the adenosine A2A receptor

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Louis-Philippe Picard, Alexander Orazietti, Duy Phuoc Tran, Andrejs Tucs, Sari Hagimoto, Zhenzhou Qi, Shuya Kate Huang, Koji Tsuda, Akio Kitao, Adnan Sljoka, R. Scott Prosser
{"title":"Balancing G protein selectivity and efficacy in the adenosine A2A receptor","authors":"Louis-Philippe Picard, Alexander Orazietti, Duy Phuoc Tran, Andrejs Tucs, Sari Hagimoto, Zhenzhou Qi, Shuya Kate Huang, Koji Tsuda, Akio Kitao, Adnan Sljoka, R. Scott Prosser","doi":"10.1038/s41589-024-01682-6","DOIUrl":null,"url":null,"abstract":"<p>The adenosine A<sub>2A</sub> receptor (A<sub>2A</sub>R) engages several G proteins, notably G<sub>o</sub> and its cognate G<sub>s</sub> protein. This coupling promiscuity is facilitated by a dynamic ensemble, revealed by <sup>19</sup>F nuclear magnetic resonance imaging of A<sub>2A</sub>R and G protein. Two transmembrane helix 6 (TM6) activation states, formerly associated with partial and full agonism, accommodate the differing volumes of G<sub>s</sub> and G<sub>o</sub>. While nucleotide depletion biases TM7 toward a fully active state in A<sub>2A</sub>R–G<sub>s</sub>, A<sub>2A</sub>R–G<sub>o</sub> is characterized by a dynamic inactive/intermediate fraction. Molecular dynamics simulations reveal that the NPxxY motif, a highly conserved switch, establishes a unique configuration in the A<sub>2A</sub>R–G<sub>o</sub> complex, failing to stabilize the helix-8 interface with G<sub>s</sub>, and adoption of the active state. The resulting TM7 dynamics hamper G protein coupling, suggesting kinetic gating may be responsible for reduced efficacy in the noncognate G protein complex. Thus, dual TM6 activation states enable greater diversity of coupling partners while TM7 dynamics dictate coupling efficacy.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":12.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01682-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The adenosine A2A receptor (A2AR) engages several G proteins, notably Go and its cognate Gs protein. This coupling promiscuity is facilitated by a dynamic ensemble, revealed by 19F nuclear magnetic resonance imaging of A2AR and G protein. Two transmembrane helix 6 (TM6) activation states, formerly associated with partial and full agonism, accommodate the differing volumes of Gs and Go. While nucleotide depletion biases TM7 toward a fully active state in A2AR–Gs, A2AR–Go is characterized by a dynamic inactive/intermediate fraction. Molecular dynamics simulations reveal that the NPxxY motif, a highly conserved switch, establishes a unique configuration in the A2AR–Go complex, failing to stabilize the helix-8 interface with Gs, and adoption of the active state. The resulting TM7 dynamics hamper G protein coupling, suggesting kinetic gating may be responsible for reduced efficacy in the noncognate G protein complex. Thus, dual TM6 activation states enable greater diversity of coupling partners while TM7 dynamics dictate coupling efficacy.

Abstract Image

平衡腺苷 A2A 受体中 G 蛋白的选择性和功效
腺苷 A2A 受体(A2AR)与多种 G 蛋白(尤其是 Go 及其同源 Gs 蛋白)发生作用。A2AR 和 G 蛋白的 19F 核磁共振成像显示,动态组合促进了这种耦合杂交。以前与部分激动和完全激动相关的两种跨膜螺旋 6 (TM6) 激活状态适应了 Gs 和 Go 的不同体积。在 A2AR-Gs 中,核苷酸耗竭会使 TM7 偏向完全激活状态,而 A2AR-Go 则以动态非激活/中间部分为特征。分子动力学模拟显示,NPxxY 矩阵是一个高度保守的开关,它在 A2AR-Go 复合物中建立了一种独特的配置,不能稳定与 Gs 的螺旋-8 接口,并采用活性状态。由此产生的 TM7 动态阻碍了 G 蛋白的耦合,这表明动力学门控可能是非识别 G 蛋白复合物功效降低的原因。因此,双重 TM6 激活状态使耦合伙伴更加多样化,而 TM7 动态则决定了耦合效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信