Pyramid diffractive optical networks for unidirectional image magnification and demagnification

IF 20.6 Q1 OPTICS
Bijie Bai, Xilin Yang, Tianyi Gan, Jingxi Li, Deniz Mengu, Mona Jarrahi, Aydogan Ozcan
{"title":"Pyramid diffractive optical networks for unidirectional image magnification and demagnification","authors":"Bijie Bai, Xilin Yang, Tianyi Gan, Jingxi Li, Deniz Mengu, Mona Jarrahi, Aydogan Ozcan","doi":"10.1038/s41377-024-01543-w","DOIUrl":null,"url":null,"abstract":"<p>Diffractive deep neural networks (D<sup>2</sup>NNs) are composed of successive transmissive layers optimized using supervised deep learning to all-optically implement various computational tasks between an input and output field-of-view. Here, we present a pyramid-structured diffractive optical network design (which we term P-D<sup>2</sup>NN), optimized specifically for unidirectional image magnification and demagnification. In this design, the diffractive layers are pyramidally scaled in alignment with the direction of the image magnification or demagnification. This P-D<sup>2</sup>NN design creates high-fidelity magnified or demagnified images in only one direction, while inhibiting the image formation in the opposite direction—achieving the desired unidirectional imaging operation using a much smaller number of diffractive degrees of freedom within the optical processor volume. Furthermore, the P-D<sup>2</sup>NN design maintains its unidirectional image magnification/demagnification functionality across a large band of illumination wavelengths despite being trained with a single wavelength. We also designed a wavelength-multiplexed P-D<sup>2</sup>NN, where a unidirectional magnifier and a unidirectional demagnifier operate simultaneously in opposite directions, at two distinct illumination wavelengths. Furthermore, we demonstrate that by cascading multiple unidirectional P-D<sup>2</sup>NN modules, we can achieve higher magnification factors. The efficacy of the P-D<sup>2</sup>NN architecture was also validated experimentally using terahertz illumination, successfully matching our numerical simulations. P-D<sup>2</sup>NN offers a physics-inspired strategy for designing task-specific visual processors.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01543-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Diffractive deep neural networks (D2NNs) are composed of successive transmissive layers optimized using supervised deep learning to all-optically implement various computational tasks between an input and output field-of-view. Here, we present a pyramid-structured diffractive optical network design (which we term P-D2NN), optimized specifically for unidirectional image magnification and demagnification. In this design, the diffractive layers are pyramidally scaled in alignment with the direction of the image magnification or demagnification. This P-D2NN design creates high-fidelity magnified or demagnified images in only one direction, while inhibiting the image formation in the opposite direction—achieving the desired unidirectional imaging operation using a much smaller number of diffractive degrees of freedom within the optical processor volume. Furthermore, the P-D2NN design maintains its unidirectional image magnification/demagnification functionality across a large band of illumination wavelengths despite being trained with a single wavelength. We also designed a wavelength-multiplexed P-D2NN, where a unidirectional magnifier and a unidirectional demagnifier operate simultaneously in opposite directions, at two distinct illumination wavelengths. Furthermore, we demonstrate that by cascading multiple unidirectional P-D2NN modules, we can achieve higher magnification factors. The efficacy of the P-D2NN architecture was also validated experimentally using terahertz illumination, successfully matching our numerical simulations. P-D2NN offers a physics-inspired strategy for designing task-specific visual processors.

Abstract Image

用于单向图像放大和消磁的金字塔衍射光学网络
衍射深度神经网络(Diffractive deep neural networks,D2NNs)由连续的透射层组成,利用有监督的深度学习进行优化,在输入和输出视场之间全光学地执行各种计算任务。在这里,我们提出了一种金字塔结构的衍射光学网络设计(我们称之为 P-D2NN),专门针对单向图像放大和消磁进行了优化。在这种设计中,衍射层呈金字塔状,与图像放大或消磁的方向保持一致。这种 P-D2NN 设计只在一个方向上形成高保真的放大或消磁图像,同时抑制相反方向上的图像形成--利用光学处理器体积内数量更少的衍射自由度实现所需的单向成像操作。此外,P-D2NN 设计尽管只使用单一波长进行训练,但仍能在大量照明波长范围内保持其单向图像放大/消散功能。我们还设计了一种波长复用的 P-D2NN,其中一个单向放大镜和一个单向消磁镜在两个不同的照明波长下以相反的方向同时工作。此外,我们还证明,通过级联多个单向 P-D2NN 模块,我们可以获得更高的放大系数。P-D2NN 架构的功效还通过太赫兹照明进行了实验验证,成功地与我们的数值模拟相吻合。P-D2NN 为设计特定任务视觉处理器提供了一种物理学启发策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信