{"title":"Generative adversarial network for Multimodal Contrastive Domain Sharing based on efficient invariant feature-centric growth analysis improved brain tumor classification.","authors":"Amarendra Reddy Panyala, Baskar Manickam","doi":"10.1080/15368378.2024.2375266","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient and accurate classification of brain tumor categories remains a critical challenge in medical imaging. While existing techniques have made strides, their reliance on generic features often leads to suboptimal results. To overcome these issues, Multimodal Contrastive Domain Sharing Generative Adversarial Network for Improved Brain Tumor Classification Based on Efficient Invariant Feature Centric Growth Analysis (MCDS-GNN-IBTC-CGA) is proposed in this manuscript.Here, the input imagesare amassed from brain tumor dataset. Then the input images are preprocesssed using Range - Doppler Matched Filter (RDMF) for improving the quality of the image. Then Ternary Pattern and Discrete Wavelet Transforms (TPDWT) is employed for feature extraction and focusing on white, gray mass, edge correlation, and depth features. The proposed method leverages Multimodal Contrastive Domain Sharing Generative Adversarial Network (MCDS-GNN) to categorize brain tumor images into Glioma, Meningioma, and Pituitary tumors. Finally, Coati Optimization Algorithm (COA) optimizes MCDS-GNN's weight parameters. The proposed MCDS-GNN-IBTC-CGA is empirically evaluated utilizing accuracy, specificity, sensitivity, Precision, F1-score,Mean Square Error (MSE). Here, MCDS-GNN-IBTC-CGA attains 12.75%, 11.39%, 13.35%, 11.42% and 12.98% greater accuracy comparing to the existingstate-of-the-arts techniques, likeMRI brain tumor categorization utilizing parallel deep convolutional neural networks (PDCNN-BTC), attention-guided convolutional neural network for the categorization of braintumor (AGCNN-BTC), intelligent driven deep residual learning method for the categorization of braintumor (DCRN-BTC),fully convolutional neural networks method for the classification of braintumor (FCNN-BTC), Convolutional Neural Network and Multi-Layer Perceptron based brain tumor classification (CNN-MLP-BTC) respectively.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"205-219"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2024.2375266","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient and accurate classification of brain tumor categories remains a critical challenge in medical imaging. While existing techniques have made strides, their reliance on generic features often leads to suboptimal results. To overcome these issues, Multimodal Contrastive Domain Sharing Generative Adversarial Network for Improved Brain Tumor Classification Based on Efficient Invariant Feature Centric Growth Analysis (MCDS-GNN-IBTC-CGA) is proposed in this manuscript.Here, the input imagesare amassed from brain tumor dataset. Then the input images are preprocesssed using Range - Doppler Matched Filter (RDMF) for improving the quality of the image. Then Ternary Pattern and Discrete Wavelet Transforms (TPDWT) is employed for feature extraction and focusing on white, gray mass, edge correlation, and depth features. The proposed method leverages Multimodal Contrastive Domain Sharing Generative Adversarial Network (MCDS-GNN) to categorize brain tumor images into Glioma, Meningioma, and Pituitary tumors. Finally, Coati Optimization Algorithm (COA) optimizes MCDS-GNN's weight parameters. The proposed MCDS-GNN-IBTC-CGA is empirically evaluated utilizing accuracy, specificity, sensitivity, Precision, F1-score,Mean Square Error (MSE). Here, MCDS-GNN-IBTC-CGA attains 12.75%, 11.39%, 13.35%, 11.42% and 12.98% greater accuracy comparing to the existingstate-of-the-arts techniques, likeMRI brain tumor categorization utilizing parallel deep convolutional neural networks (PDCNN-BTC), attention-guided convolutional neural network for the categorization of braintumor (AGCNN-BTC), intelligent driven deep residual learning method for the categorization of braintumor (DCRN-BTC),fully convolutional neural networks method for the classification of braintumor (FCNN-BTC), Convolutional Neural Network and Multi-Layer Perceptron based brain tumor classification (CNN-MLP-BTC) respectively.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.