The LuxO-OpaR quorum-sensing cascade differentially controls Vibriophage VP882 lysis-lysogeny decision making in liquid and on surfaces.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2024-07-30 eCollection Date: 2024-07-01 DOI:10.1371/journal.pgen.1011243
Francis J Santoriello, Bonnie L Bassler
{"title":"The LuxO-OpaR quorum-sensing cascade differentially controls Vibriophage VP882 lysis-lysogeny decision making in liquid and on surfaces.","authors":"Francis J Santoriello, Bonnie L Bassler","doi":"10.1371/journal.pgen.1011243","DOIUrl":null,"url":null,"abstract":"<p><p>Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to synchronize collective behaviors. QS relies on the production, release, and group-wide detection of extracellular signaling molecules called autoinducers. Vibrios use two QS systems: the LuxO-OpaR circuit and the VqmA-VqmR circuit. Both QS circuits control group behaviors including biofilm formation and surface motility. The Vibrio parahaemolyticus temperate phage φVP882 encodes a VqmA homolog (called VqmAφ). When VqmAφ is produced by φVP882 lysogens, it binds to the host-produced autoinducer called DPO and launches the φVP882 lytic cascade. This activity times induction of lysis with high host cell density and presumably promotes maximal phage transmission to new cells. Here, we explore whether, in addition to induction from lysogeny, QS controls the initial establishment of lysogeny by φVP882 in naïve host cells. Using mutagenesis, phage infection assays, and phenotypic analyses, we show that φVP882 connects its initial lysis-lysogeny decision to both host cell density and whether the host resides in liquid or on a surface. Host cells in the low-cell-density QS state primarily undergo lysogenic conversion. The QS regulator LuxO~P promotes φVP882 lysogenic conversion of low-cell-density planktonic host cells. By contrast, the ScrABC surface-sensing system regulates lysogenic conversion of low-cell-density surface-associated host cells. ScrABC controls the abundance of the second messenger molecule cyclic diguanylate, which in turn, modulates motility. The scrABC operon is only expressed when its QS repressor, OpaR, is absent. Thus, at low cell density, QS-dependent derepression of scrABC drives lysogenic conversion in surface-associated host cells. These results demonstrate that φVP882 integrates cues from multiple sensory pathways into its lifestyle decision making upon infection of a new host cell.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 7","pages":"e1011243"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011243","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to synchronize collective behaviors. QS relies on the production, release, and group-wide detection of extracellular signaling molecules called autoinducers. Vibrios use two QS systems: the LuxO-OpaR circuit and the VqmA-VqmR circuit. Both QS circuits control group behaviors including biofilm formation and surface motility. The Vibrio parahaemolyticus temperate phage φVP882 encodes a VqmA homolog (called VqmAφ). When VqmAφ is produced by φVP882 lysogens, it binds to the host-produced autoinducer called DPO and launches the φVP882 lytic cascade. This activity times induction of lysis with high host cell density and presumably promotes maximal phage transmission to new cells. Here, we explore whether, in addition to induction from lysogeny, QS controls the initial establishment of lysogeny by φVP882 in naïve host cells. Using mutagenesis, phage infection assays, and phenotypic analyses, we show that φVP882 connects its initial lysis-lysogeny decision to both host cell density and whether the host resides in liquid or on a surface. Host cells in the low-cell-density QS state primarily undergo lysogenic conversion. The QS regulator LuxO~P promotes φVP882 lysogenic conversion of low-cell-density planktonic host cells. By contrast, the ScrABC surface-sensing system regulates lysogenic conversion of low-cell-density surface-associated host cells. ScrABC controls the abundance of the second messenger molecule cyclic diguanylate, which in turn, modulates motility. The scrABC operon is only expressed when its QS repressor, OpaR, is absent. Thus, at low cell density, QS-dependent derepression of scrABC drives lysogenic conversion in surface-associated host cells. These results demonstrate that φVP882 integrates cues from multiple sensory pathways into its lifestyle decision making upon infection of a new host cell.

LuxO-OpaR法定量感应级联对嗜振动病毒 VP882 在液体中和表面上的溶解-溶菌决策具有不同的控制作用。
法定量感应(QS)是细菌用于同步集体行为的细胞间通信过程。QS 依赖于细胞外信号分子(称为自动诱导剂)的产生、释放和全群体检测。纤毛虫使用两种 QS 系统:LuxO-OpaR 电路和 VqmA-VqmR 电路。这两个 QS 电路都能控制群体行为,包括生物膜的形成和表面运动。副溶血性弧菌温带噬菌体 φVP882 编码一个 VqmA 同源物(称为 VqmAφ)。当 VqmAφ 由 φVP882 溶菌体产生时,它会与宿主产生的自诱导剂 DPO 结合,启动 φVP882 溶菌级联。这种活性会在宿主细胞密度较高时诱导裂解,并可能促进噬菌体向新细胞的最大传播。在这里,我们探讨了除了溶原诱导外,QS 是否还能控制φVP882 在幼稚宿主细胞中溶原的初始建立。通过诱变、噬菌体感染试验和表型分析,我们发现φVP882最初的溶解-溶原决定与宿主细胞密度以及宿主是在液体中还是在表面有关。处于低细胞密度 QS 状态的宿主细胞主要进行溶解转化。QS 调节因子 LuxO~P 可促进低细胞密度浮游宿主细胞的溶解转化。与此相反,ScrABC 表面感应系统调节低细胞密度表面相关宿主细胞的溶原转化。ScrABC 控制第二信使分子环状二聚氰胺的丰度,进而调节运动性。只有当 QS 抑制因子 OpaR 缺失时,scrABC 操作子才会表达。因此,在细胞密度较低的情况下,依赖于 QS 的 scrABC 的去抑制作用会驱动表面相关宿主细胞的溶菌转化。这些结果表明,φVP882 在感染新宿主细胞后,会将来自多种感觉途径的线索整合到其生活方式决策中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信