Ultrathin aerogel-structured micro/nanofiber metafabric via dual air-gelation synthesis for self-sustainable heating.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yucheng Tian, Yixiao Chen, Sai Wang, Xianfeng Wang, Jianyong Yu, Shichao Zhang, Bin Ding
{"title":"Ultrathin aerogel-structured micro/nanofiber metafabric via dual air-gelation synthesis for self-sustainable heating.","authors":"Yucheng Tian, Yixiao Chen, Sai Wang, Xianfeng Wang, Jianyong Yu, Shichao Zhang, Bin Ding","doi":"10.1038/s41467-024-50654-w","DOIUrl":null,"url":null,"abstract":"<p><p>Incorporating passive heating structures into personal thermal management technologies could effectively mitigate the escalating energy crisis. However, current passive heating materials struggle to balance thickness and insulating capability, resulting in compromised comfort, space efficiency, and limited thermoregulatory performance. Here, a dual air-gelation strategy, is developed to directly synthesize ultrathin and self-sustainable heating metafabric with 3D dual-network structure during electrospinning. Controlling the interactions among polymer, solvent, and water enables the microphase separation of charged jets, while adjusting the distribution of carbon black nanoparticles within charged fluids to form fibrous networks composed of interlaced aerogel micro/nanofibers with heat storage capabilities. With a low thickness of 0.18 mm, the integrated metafabric exhibits exceptional thermal insulation performance (15.8 mW m<sup>-1</sup>K<sup>-1</sup>), superhydrophobicity, enhanced mechanical properties, and high breathability while maintaining self-sustainable radiative heating ability (long-lasting warming of 8.8 °C). This strategy provides rich possibilities to develop advanced fibrous materials for smart textiles and thermal management.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289394/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-50654-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Incorporating passive heating structures into personal thermal management technologies could effectively mitigate the escalating energy crisis. However, current passive heating materials struggle to balance thickness and insulating capability, resulting in compromised comfort, space efficiency, and limited thermoregulatory performance. Here, a dual air-gelation strategy, is developed to directly synthesize ultrathin and self-sustainable heating metafabric with 3D dual-network structure during electrospinning. Controlling the interactions among polymer, solvent, and water enables the microphase separation of charged jets, while adjusting the distribution of carbon black nanoparticles within charged fluids to form fibrous networks composed of interlaced aerogel micro/nanofibers with heat storage capabilities. With a low thickness of 0.18 mm, the integrated metafabric exhibits exceptional thermal insulation performance (15.8 mW m-1K-1), superhydrophobicity, enhanced mechanical properties, and high breathability while maintaining self-sustainable radiative heating ability (long-lasting warming of 8.8 °C). This strategy provides rich possibilities to develop advanced fibrous materials for smart textiles and thermal management.

Abstract Image

通过双重空气凝胶合成技术实现超薄气凝胶结构微型/纳米纤维元织物的自持续加热。
将被动加热结构纳入个人热管理技术可有效缓解不断升级的能源危机。然而,目前的被动加热材料难以在厚度和隔热能力之间取得平衡,导致舒适度、空间效率和体温调节性能受到限制。本文开发了一种双重空气凝胶化策略,可在电纺丝过程中直接合成具有三维双网络结构的超薄、自持式加热元织物。通过控制聚合物、溶剂和水之间的相互作用,实现了带电射流的微相分离,同时调整了带电流体中炭黑纳米颗粒的分布,形成了由交错的气凝胶微/纳米纤维组成的纤维网,具有蓄热功能。这种集成的元纤维厚度仅为 0.18 毫米,具有优异的隔热性能(15.8 mW m-1K-1)、超疏水性、更强的机械性能和高透气性,同时还能保持自我持续辐射加热能力(持久升温 8.8 °C)。这一策略为开发用于智能纺织品和热管理的先进纤维材料提供了丰富的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信