A preoperative radiogenomic model based on quantitative heterogeneity for predicting outcomes in triple-negative breast cancer patients who underwent neoadjuvant chemotherapy.
{"title":"A preoperative radiogenomic model based on quantitative heterogeneity for predicting outcomes in triple-negative breast cancer patients who underwent neoadjuvant chemotherapy.","authors":"Jiayin Zhou, Yansong Bai, Ying Zhang, Zezhou Wang, Shiyun Sun, Luyi Lin, Yajia Gu, Chao You","doi":"10.1186/s40644-024-00746-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) is highly heterogeneous, resulting in different responses to neoadjuvant chemotherapy (NAC) and prognoses among patients. This study sought to characterize the heterogeneity of TNBC on MRI and develop a radiogenomic model for predicting both pathological complete response (pCR) and prognosis.</p><p><strong>Materials and methods: </strong>In this retrospective study, TNBC patients who underwent neoadjuvant chemotherapy at Fudan University Shanghai Cancer Center were enrolled as the radiomic development cohort (n = 315); among these patients, those whose genetic data were available were enrolled as the radiogenomic development cohort (n = 98). The study population of the two cohorts was randomly divided into a training set and a validation set at a ratio of 7:3. The external validation cohort (n = 77) included patients from the DUKE and I-SPY 1 databases. Spatial heterogeneity was characterized using features from the intratumoral subregions and peritumoral region. Hemodynamic heterogeneity was characterized by kinetic features from the tumor body. Three radiomics models were developed by logistic regression after selecting features. Model 1 included subregional and peritumoral features, Model 2 included kinetic features, and Model 3 integrated the features of Model 1 and Model 2. Two fusion models were developed by further integrating pathological and genomic features (PRM: pathology-radiomics model; GPRM: genomics-pathology-radiomics model). Model performance was assessed with the AUC and decision curve analysis. Prognostic implications were assessed with Kaplan‒Meier curves and multivariate Cox regression.</p><p><strong>Results: </strong>Among the radiomic models, the multiregional model representing multiscale heterogeneity (Model 3) exhibited better pCR prediction, with AUCs of 0.87, 0.79, and 0.78 in the training, internal validation, and external validation sets, respectively. The GPRM showed the best performance for predicting pCR in the training (AUC = 0.97, P = 0.015) and validation sets (AUC = 0.93, P = 0.019). Model 3, PRM and GPRM could stratify patients by disease-free survival, and a predicted nonpCR was associated with poor prognosis (P = 0.034, 0.001 and 0.019, respectively).</p><p><strong>Conclusion: </strong>Multiscale heterogeneity characterized by DCE-MRI could effectively predict the pCR and prognosis of TNBC patients. The radiogenomic model could serve as a valuable biomarker to improve the prediction performance.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"24 1","pages":"98"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-024-00746-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Triple-negative breast cancer (TNBC) is highly heterogeneous, resulting in different responses to neoadjuvant chemotherapy (NAC) and prognoses among patients. This study sought to characterize the heterogeneity of TNBC on MRI and develop a radiogenomic model for predicting both pathological complete response (pCR) and prognosis.
Materials and methods: In this retrospective study, TNBC patients who underwent neoadjuvant chemotherapy at Fudan University Shanghai Cancer Center were enrolled as the radiomic development cohort (n = 315); among these patients, those whose genetic data were available were enrolled as the radiogenomic development cohort (n = 98). The study population of the two cohorts was randomly divided into a training set and a validation set at a ratio of 7:3. The external validation cohort (n = 77) included patients from the DUKE and I-SPY 1 databases. Spatial heterogeneity was characterized using features from the intratumoral subregions and peritumoral region. Hemodynamic heterogeneity was characterized by kinetic features from the tumor body. Three radiomics models were developed by logistic regression after selecting features. Model 1 included subregional and peritumoral features, Model 2 included kinetic features, and Model 3 integrated the features of Model 1 and Model 2. Two fusion models were developed by further integrating pathological and genomic features (PRM: pathology-radiomics model; GPRM: genomics-pathology-radiomics model). Model performance was assessed with the AUC and decision curve analysis. Prognostic implications were assessed with Kaplan‒Meier curves and multivariate Cox regression.
Results: Among the radiomic models, the multiregional model representing multiscale heterogeneity (Model 3) exhibited better pCR prediction, with AUCs of 0.87, 0.79, and 0.78 in the training, internal validation, and external validation sets, respectively. The GPRM showed the best performance for predicting pCR in the training (AUC = 0.97, P = 0.015) and validation sets (AUC = 0.93, P = 0.019). Model 3, PRM and GPRM could stratify patients by disease-free survival, and a predicted nonpCR was associated with poor prognosis (P = 0.034, 0.001 and 0.019, respectively).
Conclusion: Multiscale heterogeneity characterized by DCE-MRI could effectively predict the pCR and prognosis of TNBC patients. The radiogenomic model could serve as a valuable biomarker to improve the prediction performance.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.