Evolution of white matter hyperintensity segmentation methods and implementation over the past two decades; an incomplete shift towards deep learning.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Maryam Rahmani, Donna Dierker, Lauren Yaeger, Andrew Saykin, Patrick H Luckett, Andrei G Vlassenko, Christopher Owens, Hussain Jafri, Kyle Womack, Jurgen Fripp, Ying Xia, Duygu Tosun, Tammie L S Benzinger, Colin L Masters, Jin-Moo Lee, John C Morris, Manu S Goyal, Jeremy F Strain, Walter Kukull, Michael Weiner, Samantha Burnham, Tim James CoxDoecke, Victor Fedyashov, Jurgen Fripp, Rosita Shishegar, Chengjie Xiong, Daniel Marcus, Parnesh Raniga, Shenpeng Li, Andrew Aschenbrenner, Jason Hassenstab, Yen Ying Lim, Paul Maruff, Hamid Sohrabi, Jo Robertson, Shaun Markovic, Pierrick Bourgeat, Vincent Doré, Clifford Jack Mayo, Parinaz Mussoumzadeh, Chris Rowe, Victor Villemagne, Randy Bateman, Chris Fowler, Qiao-Xin Li, Ralph Martins, Suzanne Schindler, Les Shaw, Carlos Cruchaga, Oscar Harari, Simon Laws, Tenielle Porter, Eleanor O'Brien, Richard Perrin, Walter Kukull, Randy Bateman, Eric McDade, Clifford Jack, John Morris, Nawaf Yassi, Pierrick Bourgeat, Richard Perrin, Blaine Roberts, Victor Villemagne, Victor Fedyashov, Benjamin Goudey
{"title":"Evolution of white matter hyperintensity segmentation methods and implementation over the past two decades; an incomplete shift towards deep learning.","authors":"Maryam Rahmani, Donna Dierker, Lauren Yaeger, Andrew Saykin, Patrick H Luckett, Andrei G Vlassenko, Christopher Owens, Hussain Jafri, Kyle Womack, Jurgen Fripp, Ying Xia, Duygu Tosun, Tammie L S Benzinger, Colin L Masters, Jin-Moo Lee, John C Morris, Manu S Goyal, Jeremy F Strain, Walter Kukull, Michael Weiner, Samantha Burnham, Tim James CoxDoecke, Victor Fedyashov, Jurgen Fripp, Rosita Shishegar, Chengjie Xiong, Daniel Marcus, Parnesh Raniga, Shenpeng Li, Andrew Aschenbrenner, Jason Hassenstab, Yen Ying Lim, Paul Maruff, Hamid Sohrabi, Jo Robertson, Shaun Markovic, Pierrick Bourgeat, Vincent Doré, Clifford Jack Mayo, Parinaz Mussoumzadeh, Chris Rowe, Victor Villemagne, Randy Bateman, Chris Fowler, Qiao-Xin Li, Ralph Martins, Suzanne Schindler, Les Shaw, Carlos Cruchaga, Oscar Harari, Simon Laws, Tenielle Porter, Eleanor O'Brien, Richard Perrin, Walter Kukull, Randy Bateman, Eric McDade, Clifford Jack, John Morris, Nawaf Yassi, Pierrick Bourgeat, Richard Perrin, Blaine Roberts, Victor Villemagne, Victor Fedyashov, Benjamin Goudey","doi":"10.1007/s11682-024-00902-w","DOIUrl":null,"url":null,"abstract":"<p><p>This systematic review examines the prevalence, underlying mechanisms, cohort characteristics, evaluation criteria, and cohort types in white matter hyperintensity (WMH) pipeline and implementation literature spanning the last two decades. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we categorized WMH segmentation tools based on their methodologies from January 1, 2000, to November 18, 2022. Inclusion criteria involved articles using openly available techniques with detailed descriptions, focusing on WMH as a primary outcome. Our analysis identified 1007 visual rating scales, 118 pipeline development articles, and 509 implementation articles. These studies predominantly explored aging, dementia, psychiatric disorders, and small vessel disease, with aging and dementia being the most prevalent cohorts. Deep learning emerged as the most frequently developed segmentation technique, indicative of a heightened scrutiny in new technique development over the past two decades. We illustrate observed patterns and discrepancies between published and implemented WMH techniques. Despite increasingly sophisticated quantitative segmentation options, visual rating scales persist, with the SPM technique being the most utilized among quantitative methods and potentially serving as a reference standard for newer techniques. Our findings highlight the need for future standards in WMH segmentation, and we provide recommendations based on these observations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11682-024-00902-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This systematic review examines the prevalence, underlying mechanisms, cohort characteristics, evaluation criteria, and cohort types in white matter hyperintensity (WMH) pipeline and implementation literature spanning the last two decades. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we categorized WMH segmentation tools based on their methodologies from January 1, 2000, to November 18, 2022. Inclusion criteria involved articles using openly available techniques with detailed descriptions, focusing on WMH as a primary outcome. Our analysis identified 1007 visual rating scales, 118 pipeline development articles, and 509 implementation articles. These studies predominantly explored aging, dementia, psychiatric disorders, and small vessel disease, with aging and dementia being the most prevalent cohorts. Deep learning emerged as the most frequently developed segmentation technique, indicative of a heightened scrutiny in new technique development over the past two decades. We illustrate observed patterns and discrepancies between published and implemented WMH techniques. Despite increasingly sophisticated quantitative segmentation options, visual rating scales persist, with the SPM technique being the most utilized among quantitative methods and potentially serving as a reference standard for newer techniques. Our findings highlight the need for future standards in WMH segmentation, and we provide recommendations based on these observations.

Abstract Image

过去二十年中白质超强度分割方法和实施的演变;向深度学习的不完全转变。
本系统综述研究了过去二十年中白质高密度(WMH)管道和实施文献的流行率、潜在机制、队列特征、评估标准和队列类型。根据《系统综述和荟萃分析首选报告项目》(PRISMA)指南,我们根据 2000 年 1 月 1 日至 2022 年 11 月 18 日期间的方法对 WMH 细分工具进行了分类。纳入标准包括使用公开可用技术并附有详细描述的文章,重点关注作为主要结果的 WMH。我们的分析确定了 1007 篇视觉评分量表、118 篇管道开发文章和 509 篇实施文章。这些研究主要探讨了老龄化、痴呆症、精神疾病和小血管疾病,其中老龄化和痴呆症是最普遍的人群。深度学习成为最常开发的细分技术,这表明过去二十年来对新技术开发的审查更加严格。我们说明了观察到的模式以及已发表和已实施的 WMH 技术之间的差异。尽管定量分割选项越来越复杂,但视觉评分标准仍然存在,其中 SPM 技术是定量方法中使用最多的,并有可能成为更新技术的参考标准。我们的研究结果强调了未来制定 WMH 切分标准的必要性,并根据这些观察结果提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信