A key component Rxt3 in the Rpd3L histone deacetylase complex regulates development, stress tolerance, amylase production and kojic acid synthesis in Aspergillus oryzae.
IF 2 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"A key component Rxt3 in the Rpd3L histone deacetylase complex regulates development, stress tolerance, amylase production and kojic acid synthesis in Aspergillus oryzae.","authors":"Chaofeng Chang, Herui Wang, Yiling Liu, Yiting Xie, Dingxiang Xue, Feng Zhang","doi":"10.1007/s10529-024-03515-x","DOIUrl":null,"url":null,"abstract":"<p><p>Rpd3L is a highly conserved histone deacetylase complex in eukaryotic cells and participates in various cellular processes. However, the roles of the Rpd3L component in filamentous fungi remain to be delineated ultimately. In this study, we constructed two knockout mutants of Rpd3L's Rxt3 subunit and characterized their biological functions in A. oryzae. Phenotypic analysis showed that AoRxt3 played a positive role in hyphal growth and conidia formation. Deletion of Aorxt3 resulted in augmented tolerance to multiple stresses, including cell wall stress, cell membrane stress, endoplasmic reticulum stress, osmotic stress and oxidative stress. Noteworthily, we found that Aorxt3-deleting mutants showed a higher kojic acid production than the control strain. However, the loss of Aorxt3 led to a significant decrease in amylase synthesis. Our findings lay the foundation for further exploring the role of other Rpd3L subunits and provide a new strategy to improve kojic acid production in A. oryzae.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03515-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rpd3L is a highly conserved histone deacetylase complex in eukaryotic cells and participates in various cellular processes. However, the roles of the Rpd3L component in filamentous fungi remain to be delineated ultimately. In this study, we constructed two knockout mutants of Rpd3L's Rxt3 subunit and characterized their biological functions in A. oryzae. Phenotypic analysis showed that AoRxt3 played a positive role in hyphal growth and conidia formation. Deletion of Aorxt3 resulted in augmented tolerance to multiple stresses, including cell wall stress, cell membrane stress, endoplasmic reticulum stress, osmotic stress and oxidative stress. Noteworthily, we found that Aorxt3-deleting mutants showed a higher kojic acid production than the control strain. However, the loss of Aorxt3 led to a significant decrease in amylase synthesis. Our findings lay the foundation for further exploring the role of other Rpd3L subunits and provide a new strategy to improve kojic acid production in A. oryzae.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.