Huey Yi Loh, Jerry W Spears, Octavio Guimaraes, Alexandra C Miller, Meghan P Thorndyke, Tyler A Thomas, Terry E Engle
{"title":"Trace Mineral Source Influences Trace Mineral Solubility in Water and Mineral Binding Strength to Ruminal Digesta.","authors":"Huey Yi Loh, Jerry W Spears, Octavio Guimaraes, Alexandra C Miller, Meghan P Thorndyke, Tyler A Thomas, Terry E Engle","doi":"10.1007/s12011-024-04318-x","DOIUrl":null,"url":null,"abstract":"<p><p>Two experiments were conducted to examine the impact of trace mineral (TM) source on in vitro and in vivo solubility characteristics. Experiment 1: Hydroxy TM (HTM) and sulfate TM (STM) sources of Cu, Mn, and Zn were incubated separately in water for 24 h. Immediately after mixing, initial pH of each solution was greater (P < 0.03) for HTM compared to STM for all elements. Final pH tended to be greater for Cu (P = 0.09) and Zn (P = 0.07) from HTM compared to STM. Water solubility of Cu, Mn, and Zn from STM was greater (P < 0.01) than HTM sources. Experiment 2: Eight steers fitted with rumen cannula were blocked by body weight and randomly assigned to treatments. Treatments consisted of 10 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM sources. Steers were individually fed a cracked corn-corn silage-based diet. Treatments were top-dressed daily. Rumen contents were collected at 0, 2, and 4 h post-feeding on d 1 and 14. On d 15, strained ruminal fluid and particle-associated microorganisms were obtained. Zinc was more tightly bound (P = 0.01) to the digesta in HTM-supplemented steers compared to STM on d 14. These data indicate that TM source influences pH and solubility of Cu, Mn, and Zn in water and may affect rumen soluble Cu concentrations and binding strength of Zn to solid digesta.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"1830-1838"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920327/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04318-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Two experiments were conducted to examine the impact of trace mineral (TM) source on in vitro and in vivo solubility characteristics. Experiment 1: Hydroxy TM (HTM) and sulfate TM (STM) sources of Cu, Mn, and Zn were incubated separately in water for 24 h. Immediately after mixing, initial pH of each solution was greater (P < 0.03) for HTM compared to STM for all elements. Final pH tended to be greater for Cu (P = 0.09) and Zn (P = 0.07) from HTM compared to STM. Water solubility of Cu, Mn, and Zn from STM was greater (P < 0.01) than HTM sources. Experiment 2: Eight steers fitted with rumen cannula were blocked by body weight and randomly assigned to treatments. Treatments consisted of 10 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM sources. Steers were individually fed a cracked corn-corn silage-based diet. Treatments were top-dressed daily. Rumen contents were collected at 0, 2, and 4 h post-feeding on d 1 and 14. On d 15, strained ruminal fluid and particle-associated microorganisms were obtained. Zinc was more tightly bound (P = 0.01) to the digesta in HTM-supplemented steers compared to STM on d 14. These data indicate that TM source influences pH and solubility of Cu, Mn, and Zn in water and may affect rumen soluble Cu concentrations and binding strength of Zn to solid digesta.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.