Parthiban Pazhamalai, Vignesh Krishnan, Mohamed Sadiq Mohamed Saleem, Sang-Jae Kim, Hye-Won Seo
{"title":"Investigating composite electrode materials of metal oxides for advanced energy storage applications","authors":"Parthiban Pazhamalai, Vignesh Krishnan, Mohamed Sadiq Mohamed Saleem, Sang-Jae Kim, Hye-Won Seo","doi":"10.1186/s40580-024-00437-2","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical energy systems mark a pivotal advancement in the energy sector, delivering substantial improvements over conventional systems. Yet, a major challenge remains the deficiency in storage technology to effectively retain the energy produced. Amongst these are batteries and supercapacitors, renowned for their versatility and efficiency, which depend heavily on the quality of their electrode materials. Metal oxide composites, in particular, have emerged as highly promising due to the synergistic effects that significantly enhance their functionality and efficiency beyond individual components. This review explores the application of metal oxide composites in the electrodes of batteries and SCs, focusing on various material perspectives and synthesis methodologies, including exfoliation and hydrothermal/solvothermal processes. It also examines how these methods influence device performance. Furthermore, the review confronts the challenges and charts future directions for metal oxide composite-based energy storage systems, critically evaluating aspects such as scalability of synthesis, cost-effectiveness, environmental sustainability, and integration with advanced nanomaterials and electrolytes. These factors are crucial for advancing next-generation energy storage technologies, striving to enhance performance while upholding sustainability and economic viability.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00437-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical energy systems mark a pivotal advancement in the energy sector, delivering substantial improvements over conventional systems. Yet, a major challenge remains the deficiency in storage technology to effectively retain the energy produced. Amongst these are batteries and supercapacitors, renowned for their versatility and efficiency, which depend heavily on the quality of their electrode materials. Metal oxide composites, in particular, have emerged as highly promising due to the synergistic effects that significantly enhance their functionality and efficiency beyond individual components. This review explores the application of metal oxide composites in the electrodes of batteries and SCs, focusing on various material perspectives and synthesis methodologies, including exfoliation and hydrothermal/solvothermal processes. It also examines how these methods influence device performance. Furthermore, the review confronts the challenges and charts future directions for metal oxide composite-based energy storage systems, critically evaluating aspects such as scalability of synthesis, cost-effectiveness, environmental sustainability, and integration with advanced nanomaterials and electrolytes. These factors are crucial for advancing next-generation energy storage technologies, striving to enhance performance while upholding sustainability and economic viability.
期刊介绍:
Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects.
Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.