Vitali Tugarinov, Francesco Torricella, Jinfa Ying, G. Marius Clore
{"title":"Transverse relaxation optimized spectroscopy of NH2 groups in glutamine and asparagine side chains of proteins","authors":"Vitali Tugarinov, Francesco Torricella, Jinfa Ying, G. Marius Clore","doi":"10.1007/s10858-024-00445-8","DOIUrl":null,"url":null,"abstract":"<div><p>A transverse relaxation optimized spectroscopy (TROSY) approach is described for the optimal detection of NH<sub>2</sub> groups in asparagine and glutamine side chains of proteins. Specifically, we have developed NMR experiments for isolating the slow-relaxing <sup>15</sup>N and <sup>1</sup>H components of NH<sub>2</sub> multiplets. Although even modest sensitivity gains in 2D NH<sub>2</sub>-TROSY correlation maps compared to their decoupled NH<sub>2</sub>–HSQC counterparts can be achieved only occasionally, substantial improvements in resolution of the NMR spectra are demonstrated for asparagine and glutamine NH<sub>2</sub> sites of a buried cavity mutant, L99A, of T4 lysozyme at 5 ºC. The NH<sub>2</sub>-TROSY approach is applied to CPMG relaxation dispersion measurements at the side chain NH<sub>2</sub> positions of the L99A T4 lysozyme mutant — a model system for studies of the role of protein dynamics in ligand binding.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"78 4","pages":"199 - 213"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-024-00445-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-024-00445-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A transverse relaxation optimized spectroscopy (TROSY) approach is described for the optimal detection of NH2 groups in asparagine and glutamine side chains of proteins. Specifically, we have developed NMR experiments for isolating the slow-relaxing 15N and 1H components of NH2 multiplets. Although even modest sensitivity gains in 2D NH2-TROSY correlation maps compared to their decoupled NH2–HSQC counterparts can be achieved only occasionally, substantial improvements in resolution of the NMR spectra are demonstrated for asparagine and glutamine NH2 sites of a buried cavity mutant, L99A, of T4 lysozyme at 5 ºC. The NH2-TROSY approach is applied to CPMG relaxation dispersion measurements at the side chain NH2 positions of the L99A T4 lysozyme mutant — a model system for studies of the role of protein dynamics in ligand binding.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.