Simulating Metal-Imidazole Complexes.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2024-08-13 Epub Date: 2024-07-31 DOI:10.1021/acs.jctc.4c00581
Zhen Li, Subhamoy Bhowmik, Luca Sagresti, Giuseppe Brancato, Madelyn Smith, David E Benson, Pengfei Li, Kenneth M Merz
{"title":"Simulating Metal-Imidazole Complexes.","authors":"Zhen Li, Subhamoy Bhowmik, Luca Sagresti, Giuseppe Brancato, Madelyn Smith, David E Benson, Pengfei Li, Kenneth M Merz","doi":"10.1021/acs.jctc.4c00581","DOIUrl":null,"url":null,"abstract":"<p><p>One commonly observed binding motif in metalloproteins involves the interaction between a metal ion and histidine's imidazole side chains. Although previous imidazole-M(II) parameters established the flexibility and reliability of the 12-6-4 Lennard-Jones (LJ)-type nonbonded model by simply tuning the ligating atom's polarizability, they have not been applied to multiple-imidazole complexes. To fill this gap, we systematically simulate multiple-imidazole complexes (ranging from one to six) for five metal ions (Co(II), Cu(II), Mn(II), Ni(II), and Zn(II)) which commonly appear in metalloproteins. Using extensive (40 ns per PMF window) sampling to assemble free energy association profiles (using OPC water and standard HID imidazole charge models from AMBER) and comparing the equilibrium distances to DFT calculations, a new set of parameters was developed to focus on energetic and geometric features of multiple-imidazole complexes. The obtained free energy profiles agree with the experimental binding free energy and DFT calculated distances. To validate our model, we show that we can close the thermodynamic cycle for metal-imidazole complexes with up to six imidazole molecules in the first solvation shell. Given the success in closing the thermodynamic cycles, we then used the same extended sampling method for six other metal ions (Ag(I), Ca(II), Cd(II), Cu(I), Fe(II), and Mg(II)) to obtain new parameters. Since these new parameters can reproduce the one-imidazole geometry and energy accurately, we hypothesize that they will reasonably predict the binding free energy of higher-level coordination numbers. Hence, we did not extend the analysis of these ions up to six imidazole complexes. Overall, the results shed light on metal-protein interactions by emphasizing the importance of ligand-ligand interaction and metal-π-stacking within metalloproteins.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325557/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00581","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

One commonly observed binding motif in metalloproteins involves the interaction between a metal ion and histidine's imidazole side chains. Although previous imidazole-M(II) parameters established the flexibility and reliability of the 12-6-4 Lennard-Jones (LJ)-type nonbonded model by simply tuning the ligating atom's polarizability, they have not been applied to multiple-imidazole complexes. To fill this gap, we systematically simulate multiple-imidazole complexes (ranging from one to six) for five metal ions (Co(II), Cu(II), Mn(II), Ni(II), and Zn(II)) which commonly appear in metalloproteins. Using extensive (40 ns per PMF window) sampling to assemble free energy association profiles (using OPC water and standard HID imidazole charge models from AMBER) and comparing the equilibrium distances to DFT calculations, a new set of parameters was developed to focus on energetic and geometric features of multiple-imidazole complexes. The obtained free energy profiles agree with the experimental binding free energy and DFT calculated distances. To validate our model, we show that we can close the thermodynamic cycle for metal-imidazole complexes with up to six imidazole molecules in the first solvation shell. Given the success in closing the thermodynamic cycles, we then used the same extended sampling method for six other metal ions (Ag(I), Ca(II), Cd(II), Cu(I), Fe(II), and Mg(II)) to obtain new parameters. Since these new parameters can reproduce the one-imidazole geometry and energy accurately, we hypothesize that they will reasonably predict the binding free energy of higher-level coordination numbers. Hence, we did not extend the analysis of these ions up to six imidazole complexes. Overall, the results shed light on metal-protein interactions by emphasizing the importance of ligand-ligand interaction and metal-π-stacking within metalloproteins.

Abstract Image

模拟金属咪唑络合物。
金属蛋白中常见的一种结合模式涉及金属离子与组氨酸咪唑侧链之间的相互作用。虽然之前的咪唑-M(II)参数通过简单地调整连接原子的极化性,建立了 12-6-4 Lennard-Jones (LJ) 型非键合模型的灵活性和可靠性,但它们尚未应用于多重咪唑复合物。为了填补这一空白,我们系统地模拟了金属蛋白中常见的五种金属离子(Co(II)、Cu(II)、Mn(II)、Ni(II)和 Zn(II))的多重咪唑复合物(从一个到六个不等)。使用大量(每个 PMF 窗口 40 毫微秒)采样来组合自由能关联曲线(使用 AMBER 中的 OPC 水和标准 HID 咪唑电荷模型),并将平衡距离与 DFT 计算结果进行比较,从而开发出一套新参数,重点关注多咪唑复合物的能量和几何特征。获得的自由能曲线与实验结合自由能和 DFT 计算距离一致。为了验证我们的模型,我们证明可以关闭第一溶壳中最多有六个咪唑分子的金属-咪唑复合物的热力学循环。鉴于成功关闭了热力学循环,我们随后对其他六种金属离子(Ag(I)、Ca(II)、Cd(II)、Cu(I)、Fe(II)和 Mg(II))使用了相同的扩展采样方法,以获得新参数。由于这些新参数可以准确地再现单咪唑的几何形状和能量,我们假设它们可以合理地预测更高级配位数的结合自由能。因此,我们没有将这些离子的分析扩展到六个咪唑配合物。总之,研究结果通过强调金属蛋白中配体-配体相互作用和金属-π堆叠的重要性,阐明了金属-蛋白质相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信