Jie Liu, Jinhu Liu, Weiwei Mu, Qingping Ma, Xiangyu Zhai, Bin Jin, Yongjun Liu, Na Zhang
{"title":"Delivery Strategy to Enhance the Therapeutic Efficacy of Liver Fibrosis via Nanoparticle Drug Delivery Systems.","authors":"Jie Liu, Jinhu Liu, Weiwei Mu, Qingping Ma, Xiangyu Zhai, Bin Jin, Yongjun Liu, Na Zhang","doi":"10.1021/acsnano.4c02380","DOIUrl":null,"url":null,"abstract":"<p><p>Liver fibrosis (LF) is a pathological repair reaction caused by a chronic liver injury that affects the health of millions of people worldwide, progressing to life-threatening cirrhosis and liver cancer without timely intervention. Due to the complexity of LF pathology, multiple etiological characteristics, and the deposited extracellular matrix, traditional drugs cannot reach appropriate targets in a time-space matching way, thus decreasing the therapeutic effect. Nanoparticle drug delivery systems (NDDS) enable multidrug co-therapy and develop multifactor delivery strategies targeting pathological processes, showing great potential in LF therapy. Based on the pathogenesis and the current clinical treatment status of LF, we systematically elucidate the targeting mechanism of NDDS used in the treatment of LF. Subsequently, we focus on the progress of drug delivery applications for LF, including combined delivery for the liver fibrotic pathological environment, overcoming biological barriers, precise intracellular regulation, and intelligent responsive delivery for the liver fibrotic microenvironment. We hope that this review will inspire the rational design of NDDS for LF in the future in order to provide ideas and methods for promoting LF regression and cure.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"20861-20885"},"PeriodicalIF":15.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c02380","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Liver fibrosis (LF) is a pathological repair reaction caused by a chronic liver injury that affects the health of millions of people worldwide, progressing to life-threatening cirrhosis and liver cancer without timely intervention. Due to the complexity of LF pathology, multiple etiological characteristics, and the deposited extracellular matrix, traditional drugs cannot reach appropriate targets in a time-space matching way, thus decreasing the therapeutic effect. Nanoparticle drug delivery systems (NDDS) enable multidrug co-therapy and develop multifactor delivery strategies targeting pathological processes, showing great potential in LF therapy. Based on the pathogenesis and the current clinical treatment status of LF, we systematically elucidate the targeting mechanism of NDDS used in the treatment of LF. Subsequently, we focus on the progress of drug delivery applications for LF, including combined delivery for the liver fibrotic pathological environment, overcoming biological barriers, precise intracellular regulation, and intelligent responsive delivery for the liver fibrotic microenvironment. We hope that this review will inspire the rational design of NDDS for LF in the future in order to provide ideas and methods for promoting LF regression and cure.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.