Raj Kumar Das , Aurindam Mondal , Subir Ghosh , Supriya Pan
{"title":"Cosmology in R2-gravity: Effects of a higher derivative scalar condensate background","authors":"Raj Kumar Das , Aurindam Mondal , Subir Ghosh , Supriya Pan","doi":"10.1016/j.jheap.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><p>A well known extension of Einstein's General Relativity is the addition of an <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-term, which is free of ghost excitations and in the linearized framework, reduces to the conventional spin-2 graviton and an additional higher derivative scalar. According to <span><span>Chakraborty and Ghosh (2022)</span></span>, the above scalar sector can sustain a Time Crystal-like minimum energy state, with non-trivial time dependence. Exploiting previous result that the scalar can sustain modes with periodic time dependence in its lowest energy, we consider this condensate as a source and study the Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology in this background. The effect of the <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-term is interpreted as a back reaction. A remarkable consequence of the condensate is that, irrespective of open or close geometry of the Universe, for an appropriate choice of parameter window, the condensate can induce a decelerating phase before the accelerated expansion starts and again, in some cases, it can help to avoid the singularity in the deceleration parameter (that is present in conventional FLRW Cosmology).</p></div>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824000661","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A well known extension of Einstein's General Relativity is the addition of an -term, which is free of ghost excitations and in the linearized framework, reduces to the conventional spin-2 graviton and an additional higher derivative scalar. According to Chakraborty and Ghosh (2022), the above scalar sector can sustain a Time Crystal-like minimum energy state, with non-trivial time dependence. Exploiting previous result that the scalar can sustain modes with periodic time dependence in its lowest energy, we consider this condensate as a source and study the Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology in this background. The effect of the -term is interpreted as a back reaction. A remarkable consequence of the condensate is that, irrespective of open or close geometry of the Universe, for an appropriate choice of parameter window, the condensate can induce a decelerating phase before the accelerated expansion starts and again, in some cases, it can help to avoid the singularity in the deceleration parameter (that is present in conventional FLRW Cosmology).
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.