Harvey E. Belkin , Ryan J. McAleer , Benedetto De Vivo
{"title":"Ore mineralization in the Mofete and San Vito geothermal fields, Campi Flegrei volcanic complex, Naples, Italy","authors":"Harvey E. Belkin , Ryan J. McAleer , Benedetto De Vivo","doi":"10.1016/j.gexplo.2024.107556","DOIUrl":null,"url":null,"abstract":"<div><p>The Mofete and San Vito geothermal fields, located west of Naples, Italy, are part of the Campi Flegrei volcanic complex. In the 1970s, exploratory wells were drilled to a depth of ~3000 m in an attempt to locate high-enthalpy fluids for potential power production. Drill core samples from Mofete wells (MF1, MF2, and MF5) and from San Vito wells (SV1 and SV3) contain authigenic ore mineralization. Pyrite, pyrrhotite, and galena are abundant. Less common are chalcopyrite, sphalerite, arsenopyrite, and scheelite; rare are millerite, violarite, native bismuth, tellurobismuthite, cassiterite, molybdenite, and acanthite. Mineral chemistry was determined by electron microprobe wavelength dispersive spectroscopy aided by a scanning electron microscope equipped with energy-dispersive spectroscopy. The mineral assemblage suggests a low sulfidation environment and the absence of pyrrhotite in the MF1 well and upper part of the SV1 well indicates variable sulfur activity. Both molybdenite and scheelite were identified in samples SV1–2860 and SV3–2353 and scheelite in the SV3 well is zoned with variable Mo<sup>6+</sup> content; low Mo<sup>6+</sup> zones show blue cathodoluminescence, whereas, zones with high Mo<sup>6+</sup> content are yellow to brown. Zoned scheelite and the occurrence of both Mo-bearing minerals attest to the variability of ƒO<sub>2</sub> and ƒS<sub>2</sub> in the geothermal fluid.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"265 ","pages":"Article 107556"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674224001729","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Mofete and San Vito geothermal fields, located west of Naples, Italy, are part of the Campi Flegrei volcanic complex. In the 1970s, exploratory wells were drilled to a depth of ~3000 m in an attempt to locate high-enthalpy fluids for potential power production. Drill core samples from Mofete wells (MF1, MF2, and MF5) and from San Vito wells (SV1 and SV3) contain authigenic ore mineralization. Pyrite, pyrrhotite, and galena are abundant. Less common are chalcopyrite, sphalerite, arsenopyrite, and scheelite; rare are millerite, violarite, native bismuth, tellurobismuthite, cassiterite, molybdenite, and acanthite. Mineral chemistry was determined by electron microprobe wavelength dispersive spectroscopy aided by a scanning electron microscope equipped with energy-dispersive spectroscopy. The mineral assemblage suggests a low sulfidation environment and the absence of pyrrhotite in the MF1 well and upper part of the SV1 well indicates variable sulfur activity. Both molybdenite and scheelite were identified in samples SV1–2860 and SV3–2353 and scheelite in the SV3 well is zoned with variable Mo6+ content; low Mo6+ zones show blue cathodoluminescence, whereas, zones with high Mo6+ content are yellow to brown. Zoned scheelite and the occurrence of both Mo-bearing minerals attest to the variability of ƒO2 and ƒS2 in the geothermal fluid.
期刊介绍:
Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics.
Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to:
define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas.
analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation.
evaluate effects of historical mining activities on the surface environment.
trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices.
assess and quantify natural and technogenic radioactivity in the environment.
determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis.
assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches.
Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.