Abolghassem Emamverdian , Abazar Ghorbani , Necla Pehlivan , Yang Li , Meisam Zargar , Guohua Liu
{"title":"Bamboo biochar helps minimize Brassica phytotoxicity driven by toxic metals in naturally polluted soils of four mine zones","authors":"Abolghassem Emamverdian , Abazar Ghorbani , Necla Pehlivan , Yang Li , Meisam Zargar , Guohua Liu","doi":"10.1016/j.eti.2024.103753","DOIUrl":null,"url":null,"abstract":"<div><p>Researchers have recently become interested in utilizing biochar amendment as an organic approach to enhance soil quality and minimize the mobility of toxic metals (TMs), which can help grow TM-tolerant plant species in polluted areas. A pot experiment was conducted to examine the efficacy of bamboo biochar (BB) in reducing the phytotoxicity of four unique mine-contaminated soil types. According to a completely randomized design (CRD), in four replications on <em>Brassica juncea</em>, a five-level bamboo biochar treatment (0 % Control, 2.5 % BB, 5 % BB, 7.5 % BB, and 10 % BB) was administered in naturally contaminated areas of Sarcheshmeh, Gol-Gohar, Chadormalu, and Anguran mines. The data show that Bamboo Biochar (BB) increased soil enzymatic activities (58 %), reformed soil structure, including pH (7 %) and electrical conductivity (EC) (51 %), and decreased the availability of TMs (Zn (37 %), Pb(34 %), Cd(51 %), Cu(34 %)), preventing accumulation in roots (42 %) and translocation to shoots (38 %). The phytochelatin (79 %), ascorbic acid (56 %), glutathione contents (57 %), and antioxidant (51 %) and glyoxalase activities (71 %) in <em>B. juncea</em> ultimately enhanced root-shoot dry biomass (44 %) and overall tolerance to TMs in mine-polluted soil (43 %). BB at 10 % might be used as a reliable soil amendment and natural metal immobilization adsorbent in the soil, as well as a suitable option for reducing oxidative stress caused by TMs in <em>B. juncea</em> plants, which are strong phytoremediation candidates in polluted soils. Future research endeavors might aim to discover cost-effective, efficient, and natural substances that can enhance and diminish environmental toxicity, eliminate soil contamination caused by heavy metals, and ultimately enhance human well-being. Keywords: Biochar Application; Soil amendment; Plant stress tolerance; Toxic metal; Phytoremediation</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103753"},"PeriodicalIF":6.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002293/pdfft?md5=ed227a20ccc1fa380eb668b5a9bc1d41&pid=1-s2.0-S2352186424002293-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424002293","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers have recently become interested in utilizing biochar amendment as an organic approach to enhance soil quality and minimize the mobility of toxic metals (TMs), which can help grow TM-tolerant plant species in polluted areas. A pot experiment was conducted to examine the efficacy of bamboo biochar (BB) in reducing the phytotoxicity of four unique mine-contaminated soil types. According to a completely randomized design (CRD), in four replications on Brassica juncea, a five-level bamboo biochar treatment (0 % Control, 2.5 % BB, 5 % BB, 7.5 % BB, and 10 % BB) was administered in naturally contaminated areas of Sarcheshmeh, Gol-Gohar, Chadormalu, and Anguran mines. The data show that Bamboo Biochar (BB) increased soil enzymatic activities (58 %), reformed soil structure, including pH (7 %) and electrical conductivity (EC) (51 %), and decreased the availability of TMs (Zn (37 %), Pb(34 %), Cd(51 %), Cu(34 %)), preventing accumulation in roots (42 %) and translocation to shoots (38 %). The phytochelatin (79 %), ascorbic acid (56 %), glutathione contents (57 %), and antioxidant (51 %) and glyoxalase activities (71 %) in B. juncea ultimately enhanced root-shoot dry biomass (44 %) and overall tolerance to TMs in mine-polluted soil (43 %). BB at 10 % might be used as a reliable soil amendment and natural metal immobilization adsorbent in the soil, as well as a suitable option for reducing oxidative stress caused by TMs in B. juncea plants, which are strong phytoremediation candidates in polluted soils. Future research endeavors might aim to discover cost-effective, efficient, and natural substances that can enhance and diminish environmental toxicity, eliminate soil contamination caused by heavy metals, and ultimately enhance human well-being. Keywords: Biochar Application; Soil amendment; Plant stress tolerance; Toxic metal; Phytoremediation
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.