Unlocking the potential of biosurfactants: Innovations in metabolic and genetic engineering for sustainable industrial and environmental solutions

Sameer Chabhadiya , D.K. Acharya , Amitsinh Mangrola , Rupal Shah , Edwin A. Pithawala
{"title":"Unlocking the potential of biosurfactants: Innovations in metabolic and genetic engineering for sustainable industrial and environmental solutions","authors":"Sameer Chabhadiya ,&nbsp;D.K. Acharya ,&nbsp;Amitsinh Mangrola ,&nbsp;Rupal Shah ,&nbsp;Edwin A. Pithawala","doi":"10.1016/j.biotno.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Biosurfactants, synthesized by microorganisms, hold potential for various industrial and environmental applications due to their surface-active properties and biodegradability. Metabolic and genetic engineering strategies enhance biosurfactant production by modifying microbial pathways and genetics. Strategies include optimizing biosurfactant biosynthesis pathways, expanding substrate utilization, and improving stress responses. Genetic engineering allows customization of biosurfactant characteristics to meet industrial needs. Notable examples include engineering <em>Pseudomonas aeruginosa</em> for enhanced rhamnolipid production and creating synthetic biosurfactant pathways in non-native hosts like <em>Escherichia coli</em>. CRISPR-Cas9 technology offers precise tools for genetic manipulation, enabling targeted gene disruption and promoter optimization to enhance biosurfactant production efficiency. Synthetic promoters enable precise control over biosurfactant gene expression, contributing to pathway optimization across diverse microbial hosts. The future of biosurfactant research includes sustainable bio-processing, customized biosurfactant engineering, and integration of artificial intelligence and systems biology. Advances in genetic and metabolic engineering will enable tailor-made biosurfactants for diverse applications, with potential for industrial-scale production and commercialization. Exploration of untapped microbial diversity may lead to novel biosurfactants with unique properties, expanding the versatility and sustainability of biosurfactant-based solutions.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 111-119"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000114/pdfft?md5=4bf3ad577ced0d7cd38282ad249883ae&pid=1-s2.0-S2665906924000114-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906924000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biosurfactants, synthesized by microorganisms, hold potential for various industrial and environmental applications due to their surface-active properties and biodegradability. Metabolic and genetic engineering strategies enhance biosurfactant production by modifying microbial pathways and genetics. Strategies include optimizing biosurfactant biosynthesis pathways, expanding substrate utilization, and improving stress responses. Genetic engineering allows customization of biosurfactant characteristics to meet industrial needs. Notable examples include engineering Pseudomonas aeruginosa for enhanced rhamnolipid production and creating synthetic biosurfactant pathways in non-native hosts like Escherichia coli. CRISPR-Cas9 technology offers precise tools for genetic manipulation, enabling targeted gene disruption and promoter optimization to enhance biosurfactant production efficiency. Synthetic promoters enable precise control over biosurfactant gene expression, contributing to pathway optimization across diverse microbial hosts. The future of biosurfactant research includes sustainable bio-processing, customized biosurfactant engineering, and integration of artificial intelligence and systems biology. Advances in genetic and metabolic engineering will enable tailor-made biosurfactants for diverse applications, with potential for industrial-scale production and commercialization. Exploration of untapped microbial diversity may lead to novel biosurfactants with unique properties, expanding the versatility and sustainability of biosurfactant-based solutions.

释放生物表面活性剂的潜力:新陈代谢和基因工程创新:可持续的工业和环境解决方案
由微生物合成的生物表面活性剂具有表面活性和生物降解性,因此在各种工业和环境应用中具有潜力。代谢和基因工程策略通过改变微生物途径和遗传学来提高生物表面活性剂的产量。这些策略包括优化生物表面活性剂的生物合成途径、扩大底物利用率和改善应激反应。基因工程可以定制生物表面活性剂的特性,以满足工业需求。著名的例子包括对铜绿假单胞菌进行工程改造,以提高鼠李糖脂的产量,以及在大肠杆菌等非本地宿主中创建合成生物表面活性剂途径。CRISPR-Cas9 技术为遗传操作提供了精确的工具,可以有针对性地破坏基因和优化启动子,从而提高生物表面活性剂的生产效率。合成启动子可精确控制生物表面活性剂基因的表达,有助于优化不同微生物宿主的通路。生物表面活性剂研究的未来包括可持续生物加工、定制生物表面活性剂工程以及人工智能与系统生物学的整合。遗传和代谢工程方面的进步将使生物表面活性剂能够量身定制,用于各种不同的应用,并有可能实现工业规模生产和商业化。对尚未开发的微生物多样性的探索可能会产生具有独特性质的新型生物表面活性剂,从而扩大基于生物表面活性剂的解决方案的多功能性和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信