A short process for organics removal from sodium aluminate solution by regulating electrical double layer of tricalcium aluminate hexahydrate

IF 4.7 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
{"title":"A short process for organics removal from sodium aluminate solution by regulating electrical double layer of tricalcium aluminate hexahydrate","authors":"","doi":"10.1016/S1003-6326(24)66546-5","DOIUrl":null,"url":null,"abstract":"<div><p>The economical removal of organics from sodium aluminate solutions has been required for decades. Based on security filtration using tricalcium aluminate hexahydrate (TCA) as a filter aid, a novel short process to eliminate impurity particles and remove organics simultaneously was presented. Ultrafine TCA samples with poor crystallization, high TCA content, high surface free energy, and large lattice distortion were prepared in the concentrated sodium aluminate solution. The zeta potential of the TCA binary mixture in alkaline solutions was linearly depended on the TCA content, suggesting the additivity of the zeta potential in the binary mixture. The variation in the electrical double layer of the TCA binary mixture was demonstrated in the alkaline solution. Furthermore, the ultrafine TCA exhibited a high adsorption capacity for organics with long alkyl chains and high relative-molecular-mass. The adsorption capacity of 69.69 mg/g organic carbon for sodium humate was achieved, whereas the digestion at a high temperature remarkably reduced the adsorption capacity of TCA.</p></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1003632624665465/pdf?md5=fb48fbe7772bbabb8334a701dfa1bccf&pid=1-s2.0-S1003632624665465-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665465","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The economical removal of organics from sodium aluminate solutions has been required for decades. Based on security filtration using tricalcium aluminate hexahydrate (TCA) as a filter aid, a novel short process to eliminate impurity particles and remove organics simultaneously was presented. Ultrafine TCA samples with poor crystallization, high TCA content, high surface free energy, and large lattice distortion were prepared in the concentrated sodium aluminate solution. The zeta potential of the TCA binary mixture in alkaline solutions was linearly depended on the TCA content, suggesting the additivity of the zeta potential in the binary mixture. The variation in the electrical double layer of the TCA binary mixture was demonstrated in the alkaline solution. Furthermore, the ultrafine TCA exhibited a high adsorption capacity for organics with long alkyl chains and high relative-molecular-mass. The adsorption capacity of 69.69 mg/g organic carbon for sodium humate was achieved, whereas the digestion at a high temperature remarkably reduced the adsorption capacity of TCA.

通过调节六水铝酸三钙的电双层从铝酸钠溶液中去除有机物的简易工艺
从铝酸钠溶液中经济地去除有机物是几十年来的要求。在使用六水铝酸三钙(TCA)作为助滤剂进行安全过滤的基础上,提出了一种同时去除杂质颗粒和有机物的新型短流程。在浓铝酸钠溶液中制备了结晶性差、TCA 含量高、表面自由能高、晶格畸变大的超细 TCA 样品。三氯乙酸二元混合物在碱性溶液中的 zeta 电位与三氯乙酸含量呈线性关系,表明二元混合物中的 zeta 电位具有相加性。在碱性溶液中,三氯乙酸二元混合物的电双层发生了变化。此外,超细 TCA 对具有长烷基链和高相对分子质量的有机物具有很高的吸附能力。对腐植酸钠的吸附能力达到 69.69 毫克/克有机碳,而高温消化则明显降低了 TCA 的吸附能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
17.80%
发文量
8456
审稿时长
3.6 months
期刊介绍: The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信