The sparsity index in Poisson size-biased sampling: Algorithms for the optimal unbiased estimation from small samples

Pub Date : 2024-07-17 DOI:10.1016/j.spl.2024.110217
Laura Bondi , Marcello Pagano , Marco Bonetti
{"title":"The sparsity index in Poisson size-biased sampling: Algorithms for the optimal unbiased estimation from small samples","authors":"Laura Bondi ,&nbsp;Marcello Pagano ,&nbsp;Marco Bonetti","doi":"10.1016/j.spl.2024.110217","DOIUrl":null,"url":null,"abstract":"<div><p>If the probability that a statistical unit is sampled is proportional to a size variable, then size bias occurs. As an example, when sampling individuals from a population, larger households are overrepresented.</p><p>With size-biased sampling, caution must be applied in estimation. We propose two exact algorithms for the calculation of the uniformly minimum variance unbiased estimator for the sparsity index in size-biased Poisson sampling. The algorithms are computationally burdensome even for small sample sizes, which is our setting of interest. As an alternative, a third, approximate algorithm based on the inverse Fourier transform is presented. We provide ready-to-use tables for the value of the optimal estimator.</p><p>An exact confidence interval based on the optimal estimator is also proposed, and the performance of the estimation procedure is compared to classical maximum likelihood inference, both in terms of mean squared error and average coverage probability and width of the confidence intervals.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016771522400186X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If the probability that a statistical unit is sampled is proportional to a size variable, then size bias occurs. As an example, when sampling individuals from a population, larger households are overrepresented.

With size-biased sampling, caution must be applied in estimation. We propose two exact algorithms for the calculation of the uniformly minimum variance unbiased estimator for the sparsity index in size-biased Poisson sampling. The algorithms are computationally burdensome even for small sample sizes, which is our setting of interest. As an alternative, a third, approximate algorithm based on the inverse Fourier transform is presented. We provide ready-to-use tables for the value of the optimal estimator.

An exact confidence interval based on the optimal estimator is also proposed, and the performance of the estimation procedure is compared to classical maximum likelihood inference, both in terms of mean squared error and average coverage probability and width of the confidence intervals.

分享
查看原文
泊松大小偏置抽样中的稀疏指数:小样本无偏估计最优算法
如果统计单位被抽样的概率与规模变量成正比,那么就会出现规模偏差。举例来说,从人口中抽取个体时,规模较大的家庭所占比例会过高。我们提出了两种精确算法,用于计算规模偏置泊松抽样中稀疏指数的均匀最小方差无偏估计器。即使对于我们感兴趣的小样本量,这两种算法的计算量也很大。作为替代方案,我们提出了第三种基于反傅立叶变换的近似算法。我们还提出了基于最优估计值的精确置信区间,并从均方误差、平均覆盖概率和置信区间宽度两方面,将估计程序的性能与经典的最大似然推断进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信