Optimization strategies for metallization in n-type crystalline silicon TOPCon solar cells: Pathways to elevated fill factor and enhanced efficiency

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rafi Ur Rahman , Muhammad Quddamah Khokhar , Hasnain Yousuf , Maha Nur Aida , Jaljalalul Abedin Jony , Alamgeer , Polgampola Chamani Madara , Mengmeng Chu , Sangheon Park , Junsin Yi
{"title":"Optimization strategies for metallization in n-type crystalline silicon TOPCon solar cells: Pathways to elevated fill factor and enhanced efficiency","authors":"Rafi Ur Rahman ,&nbsp;Muhammad Quddamah Khokhar ,&nbsp;Hasnain Yousuf ,&nbsp;Maha Nur Aida ,&nbsp;Jaljalalul Abedin Jony ,&nbsp;Alamgeer ,&nbsp;Polgampola Chamani Madara ,&nbsp;Mengmeng Chu ,&nbsp;Sangheon Park ,&nbsp;Junsin Yi","doi":"10.1016/j.cap.2024.07.012","DOIUrl":null,"url":null,"abstract":"<div><p>In advancing photovoltaic technology, optimizing the metallization process is crucial for balancing electrical conductivity and optical performance in solar cell fabrication. This process directly impacts the efficiency and quality of solar cells, traditionally measured by the fill factor (<em>FF</em>). Historically, efforts have focused on evolving metal contacts to reduce optical shading and series resistance, which degrade solar cell efficiency. Our study enhances n-type Tunnel Oxide Passivated Contact (<em>n-TOPCon</em>) solar cells by optimizing screen-printing metallization, particularly by examining the effects of squeegee speeds. Employing a mix of experimental and analytical methodologies, we aimed to identify optimal conditions that improve electrical and optical performance, thereby elevating cell efficiency. Our findings indicate that a squeegee speed of 170 mm/s substantially boosts solar cell performance, evidenced by a current density (J<sub>sc</sub>) of 38.96 mA/cm<sup>2</sup>, open-circuit voltage (<em>V</em><sub><em>oc</em></sub>) of 684.29 mV, fill factor (<em>FF</em>) of 78.77 %, and a power conversion efficiency (<em>PCE</em>) of 21.00 %. Further, dark I–V measurements confirmed a shunt resistance (<em>R</em><sub><em>sh</em></sub>) of 6.25 × 10<sup>6</sup> Ω and a reduced series resistance (<em>R</em><sub><em>s</em></sub>) of 6.48 Ω, underscoring the significance of precise metallization in reducing resistive losses and enhancing efficiency. Future research will explore innovative materials and cutting-edge printing techniques beyond squeegee speed adjustments. The potential incorporation of nanomaterials and conducting polymers aims to refine the metallization process further, promising to push the boundaries of efficiency and cost-effectiveness. This progression is essential for advancing n-TOPCon solar cell development, setting new industry standards, and propelling the sustainable energy movement.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"67 ","pages":"Pages 107-114"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001676","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In advancing photovoltaic technology, optimizing the metallization process is crucial for balancing electrical conductivity and optical performance in solar cell fabrication. This process directly impacts the efficiency and quality of solar cells, traditionally measured by the fill factor (FF). Historically, efforts have focused on evolving metal contacts to reduce optical shading and series resistance, which degrade solar cell efficiency. Our study enhances n-type Tunnel Oxide Passivated Contact (n-TOPCon) solar cells by optimizing screen-printing metallization, particularly by examining the effects of squeegee speeds. Employing a mix of experimental and analytical methodologies, we aimed to identify optimal conditions that improve electrical and optical performance, thereby elevating cell efficiency. Our findings indicate that a squeegee speed of 170 mm/s substantially boosts solar cell performance, evidenced by a current density (Jsc) of 38.96 mA/cm2, open-circuit voltage (Voc) of 684.29 mV, fill factor (FF) of 78.77 %, and a power conversion efficiency (PCE) of 21.00 %. Further, dark I–V measurements confirmed a shunt resistance (Rsh) of 6.25 × 106 Ω and a reduced series resistance (Rs) of 6.48 Ω, underscoring the significance of precise metallization in reducing resistive losses and enhancing efficiency. Future research will explore innovative materials and cutting-edge printing techniques beyond squeegee speed adjustments. The potential incorporation of nanomaterials and conducting polymers aims to refine the metallization process further, promising to push the boundaries of efficiency and cost-effectiveness. This progression is essential for advancing n-TOPCon solar cell development, setting new industry standards, and propelling the sustainable energy movement.

Abstract Image

n 型晶体硅 TOPCon 太阳能电池金属化的优化策略:提高填充因子和效率的途径
在推动光伏技术发展的过程中,优化金属化工艺对于平衡太阳能电池制造中的导电性和光学性能至关重要。该工艺直接影响太阳能电池的效率和质量,传统上以填充因子(FF)来衡量。一直以来,人们致力于改进金属触点,以减少降低太阳能电池效率的光学阴影和串联电阻。我们的研究通过优化丝网印刷金属化,特别是通过研究刮刀速度的影响,提高了 n 型隧道氧化物钝化触点(n-TOPCon)太阳能电池的性能。我们采用实验和分析相结合的方法,旨在确定改善电气和光学性能的最佳条件,从而提高电池效率。我们的研究结果表明,170 毫米/秒的刮板速度大大提高了太阳能电池的性能,具体表现为电流密度 (Jsc) 为 38.96 mA/cm2,开路电压 (Voc) 为 684.29 mV,填充因子 (FF) 为 78.77 %,功率转换效率 (PCE) 为 21.00 %。此外,暗 I-V 测量证实并联电阻 (Rsh) 为 6.25 × 106 Ω,串联电阻 (Rs) 为 6.48 Ω,这突出表明了精确金属化在减少电阻损耗和提高效率方面的重要性。未来的研究将探索除调整刮刀速度之外的创新材料和尖端印刷技术。可能加入的纳米材料和导电聚合物旨在进一步完善金属化工艺,有望推动效率和成本效益的发展。这一进展对于推进 n-TOPCon 太阳能电池的开发、制定新的行业标准和推动可持续能源运动至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信