Pressurized membranes between walls: Thermodynamic process changes force and stiffness

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Pressurized membranes between walls: Thermodynamic process changes force and stiffness","authors":"","doi":"10.1016/j.jmps.2024.105798","DOIUrl":null,"url":null,"abstract":"<div><p>Pressurized solids are ubiquitous in nature. Mechanical properties of biological tissues arise from cell turgor pressure and membrane elasticity. Flat contact between cells generate nonlinear forces. In this work, cells are idealized as pressurized elastic membranes in frictionless contact with one another. Contact forces are experimentally measured on rubber-like membranes and computed using finite element analysis (FEA). FEA matches experimental force-indentation relationships from small to large indentations. With the chosen dimensionless numbers, data gather on a master curve. The isobaric force exhibits a 4/3 power law over 1.5 decades of indentation. Forces for other thermodynamic processes (adiabatic, isothermal/osmotic and isochoric) are interpolated from isobaric data. Regarding stiffness, the isochoric process is superlinear contrary to the sublinear isobaric stiffness. Simple force-indentation relationships are given for each process.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624002643","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pressurized solids are ubiquitous in nature. Mechanical properties of biological tissues arise from cell turgor pressure and membrane elasticity. Flat contact between cells generate nonlinear forces. In this work, cells are idealized as pressurized elastic membranes in frictionless contact with one another. Contact forces are experimentally measured on rubber-like membranes and computed using finite element analysis (FEA). FEA matches experimental force-indentation relationships from small to large indentations. With the chosen dimensionless numbers, data gather on a master curve. The isobaric force exhibits a 4/3 power law over 1.5 decades of indentation. Forces for other thermodynamic processes (adiabatic, isothermal/osmotic and isochoric) are interpolated from isobaric data. Regarding stiffness, the isochoric process is superlinear contrary to the sublinear isobaric stiffness. Simple force-indentation relationships are given for each process.

Abstract Image

墙壁之间的加压膜:热力学过程改变力和刚度
加压固体在自然界中无处不在。生物组织的机械特性源于细胞的张力压力和膜的弹性。细胞之间的平面接触会产生非线性力。在这项研究中,细胞被理想化为彼此无摩擦接触的加压弹性膜。实验测量了橡胶膜上的接触力,并使用有限元分析(FEA)进行了计算。有限元分析与实验中从小压痕到大压痕的力-压痕关系相匹配。通过所选的无量纲数,数据聚集在一条主曲线上。在 15 年的压痕过程中,等压力呈现出 4/3 的幂律。其他热力学过程(绝热、等温/等渗和等时力)的力是根据等压数据内插得到的。关于刚度,等温过程是超线性的,而等压刚度则是亚线性的。每个过程都给出了简单的力-压痕关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信