Unveiling microstructure effect on nanoscratch behavior of gold-platinum alloys

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
{"title":"Unveiling microstructure effect on nanoscratch behavior of gold-platinum alloys","authors":"","doi":"10.1016/j.ijmecsci.2024.109594","DOIUrl":null,"url":null,"abstract":"<div><p>The microstructural effect on the mechanical behaviors of gold-platinum alloys during nanoscratch is revealed. By adjusting the microstructures (crystallographic orientation, interface type, grain size, twinning thickness), the hardness, plasticity, removal rate and surface roughness of the alloys are significantly improved. The nanoscratch is performed by molecular dynamics (MD). For the single-crystal (SC) alloys, the <span><math><mrow><mrow><mo>[</mo><mrow><mn>1</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>]</mo></mrow><mrow><mo>(</mo><mn>111</mn><mo>)</mo></mrow></mrow></math></span>-oriented SC alloy shows the high hardness, wear resistance and low roughness. The high dislocation density induces the strong work hardening while the horizontal twinning boundaries (HTBs) effectively improve the surface quality by hindering the elastic recovery. For the bi-crystal (BC) alloys, the BC alloy with TB exhibits the excellent plasticity and low roughness. TB can uniformly limit the dislocation slip and promote the dislocation nucleation to strengthen the plasticity and surface quality. For the polycrystal (PC) and nanotwinned-polycrystal (NTPC) alloys, the alloys with small grain size or small twinning thickness show the high removal rate and low roughness. The reduction in grain size or twinning thickness inhibits the dislocation motion and promotes the GB or TB migration to improve the surface quality and atomic removal. These results provide an important theoretical basis for the microstructural design and nanofabrication of gold-platinum alloys with smooth surface and remarkable mechanical property, expanding the application for the bimetallic materials.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324006350","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The microstructural effect on the mechanical behaviors of gold-platinum alloys during nanoscratch is revealed. By adjusting the microstructures (crystallographic orientation, interface type, grain size, twinning thickness), the hardness, plasticity, removal rate and surface roughness of the alloys are significantly improved. The nanoscratch is performed by molecular dynamics (MD). For the single-crystal (SC) alloys, the [11¯0](111)-oriented SC alloy shows the high hardness, wear resistance and low roughness. The high dislocation density induces the strong work hardening while the horizontal twinning boundaries (HTBs) effectively improve the surface quality by hindering the elastic recovery. For the bi-crystal (BC) alloys, the BC alloy with TB exhibits the excellent plasticity and low roughness. TB can uniformly limit the dislocation slip and promote the dislocation nucleation to strengthen the plasticity and surface quality. For the polycrystal (PC) and nanotwinned-polycrystal (NTPC) alloys, the alloys with small grain size or small twinning thickness show the high removal rate and low roughness. The reduction in grain size or twinning thickness inhibits the dislocation motion and promotes the GB or TB migration to improve the surface quality and atomic removal. These results provide an important theoretical basis for the microstructural design and nanofabrication of gold-platinum alloys with smooth surface and remarkable mechanical property, expanding the application for the bimetallic materials.

Abstract Image

揭示微观结构对金铂合金纳米划痕行为的影响
研究揭示了纳米划痕过程中微观结构对金铂合金机械性能的影响。通过调整微观结构(晶体取向、界面类型、晶粒大小、孪晶厚度),合金的硬度、塑性、去除率和表面粗糙度都得到了显著改善。纳米划痕是通过分子动力学(MD)进行的。对于单晶(SC)合金,[11¯0](111)取向的 SC 合金显示出高硬度、耐磨性和低粗糙度。高位错密度诱导了强加工硬化,而水平孪晶界(HTB)通过阻碍弹性恢复有效地改善了表面质量。对于双晶(BC)合金,含有 TB 的 BC 合金具有优异的塑性和低粗糙度。TB 可以均匀地限制位错滑移并促进位错成核,从而增强塑性和表面质量。对于多晶(PC)和纳米孪晶多晶(NTPC)合金,晶粒尺寸小或孪晶厚度小的合金具有高去除率和低粗糙度的特点。晶粒尺寸或孪晶厚度的减小抑制了位错运动,促进了 GB 或 TB 迁移,从而提高了表面质量和原子去除率。这些结果为具有光滑表面和优异机械性能的金铂合金的微结构设计和纳米制造提供了重要的理论依据,拓展了双金属材料的应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信